
Stork
Release 0.12.0

Oct 14, 2020

Contents

1 Overview 3
1.1 Goals . 3
1.2 Architecture . 3

2 Installation 5
2.1 Prerequisites . 5
2.2 Database Migration Tool (optional) . 6
2.3 Installing from Packages . 7

2.3.1 Installing on Debian/Ubuntu . 7
2.3.2 Installing on CentOS/RHEL/Fedora . 7
2.3.3 Initial Setup of the Stork Server . 7
2.3.4 Initial Setup of the Stork Agent . 8

2.4 Installing from Sources . 8
2.4.1 Prerequisites . 8
2.4.2 Download Sources . 9
2.4.3 Building . 9

3 Using Stork 11
3.1 Managing Users . 11
3.2 Changing a User Password . 12
3.3 Deploying Stork Agent . 12
3.4 Connecting and Monitoring Machines . 12

3.4.1 Registering a New Machine . 12
3.4.2 Monitoring a Machine . 13
3.4.3 Deleting a Machine . 13

3.5 Monitoring Applications . 13
3.5.1 Application Status . 13
3.5.2 IPv4 and IPv6 Subnets per Kea Application . 14
3.5.3 IPv4 and IPv6 Subnets in the Whole Network . 14
3.5.4 IPv4 and IPv6 Networks . 15
3.5.5 Host Reservations . 15
3.5.6 Sources of Host Reservations . 16
3.5.7 Kea High Availability Status . 16
3.5.8 Viewing Kea Log . 17

3.6 Dashboard . 18
3.6.1 DHCP Panel . 18
3.6.2 Events Panel . 18

i

3.7 Events Page . 18

4 Backend API 19

5 Developer’s Guide 21
5.1 Rakefile . 21
5.2 Generating Documentation . 21
5.3 Setting Up the Development Environment . 21

5.3.1 Installing Git Hooks . 22
5.4 Agent API . 22
5.5 ReST API . 23
5.6 Backend Unit Tests . 23

5.6.1 Unit Tests Database . 24
5.6.2 Unit Tests Coverage . 24

5.7 Docker Containers . 24
5.8 Packaging . 25

6 Demo 27
6.1 Requirements . 27
6.2 Installation Steps . 28

6.2.1 Premium Features . 28
6.3 Initialization . 29
6.4 Stork Environment Simulator . 29
6.5 Prometheus . 29
6.6 Grafana . 30

7 Manual Pages 31
7.1 stork-server - The central Stork server . 31

7.1.1 Synopsis . 31
7.1.2 Description . 31
7.1.3 Arguments . 31
7.1.4 Mailing Lists and Support . 32
7.1.5 History . 32
7.1.6 See Also . 32

7.2 stork-agent - Stork agent that monitors BIND 9 and Kea services 32
7.2.1 Synopsis . 32
7.2.2 Description . 33
7.2.3 Arguments . 33
7.2.4 Mailing Lists and Support . 33
7.2.5 History . 34
7.2.6 See Also . 34

7.3 stork-db-migrate - The Stork database migration tool . 34
7.3.1 Synopsis . 34
7.3.2 Description . 34
7.3.3 Arguments . 34
7.3.4 Mailing Lists and Support . 35
7.3.5 History . 35
7.3.6 See Also . 35

8 Indices and tables 37

ii

Stork, Release 0.12.0

Stork is a new project led by ISC with the aim of delivering an ISC BIND 9 and ISC Kea DHCP use
and monitoring dashboard. It is intended to be a spiritual successor of the earlier attempts Kittiwake and
Anterius.

This is the reference guide for Stork version 0.12.0. Links to the most up-to-date version of this doc-
ument, along with other documents for Stork, can be found on ISC’s Stork project homepage or at
readthedocs .

Contents 1

https://gitlab.isc.org/isc-projects/stork
https://stork.readthedocs.io

Stork, Release 0.12.0

2 Contents

CHAPTER 1

Overview

1.1 Goals

The goals of the Stork project are as follows:

• to provide monitoring and insight into ISC Kea DHCP and ISC BIND 9 operations

• to provide alerting mechanisms that indicate failures, fault conditions, and other unwanted events in ISC Kea
DHCP and ISC BIND 9 services

• to permit easier troubleshooting of these services

1.2 Architecture

Stork is comprised of two components: Stork Server and Stork Agent.

Stork Agent is installed along with Kea DHCP or BIND 9 and interacts directly with those services. There may
be many agents deployed in a network, one per machine.

Stork Server is installed on a stand-alone machine. It connects to any indicated agents and indirectly (via those
agents) interacts with the Kea DHCP and BIND 9 services. It provides an integrated, centralized front end for inter-
acting with these services. Only one Stork Server is deployed in a network.

3

Stork, Release 0.12.0

4 Chapter 1. Overview

CHAPTER 2

Installation

Stork can be installed from pre-built packages or from sources. The following sections describe both methods.

2.1 Prerequisites

Stork Server and Stork Agent have been tested thoroughly on the Ubuntu 18.04 system. They have been
tested and run on the Fedora 31 system as well.

The Stork Agent does not require any specific dependencies to run. It can be run immediately after installation.

Stork uses the status-get command to communicate with Kea, and therefore will only work with a version of Kea that
supports status’get. The status-get command was introduced in Kea 1.7.3. At this time, Stork works with Kea version
1.7.3 and later versions only, although we intend to backport the status-get command to Kea 1.6.3.

Stork requires the premium Host Commands hook library to retrieve host reservations stored in an external database.
Stork can retrieve host reservations stored locally in the Kea configuration without any additional hook libraries.

For the Stork Server, a PostgreSQL database (https://www.postgresql.org/) version 11 or later is required. The
general installation procedure for PostgreSQL is OS-specific and is not included here. However, please keep in mind
that Stork uses pgcrypto extensions, which are often coming in a separate package. For example, you need postgresql-
crypto package on Fedora and postgresql12-contrib on RHEL and CentOS.

These instructions prepare a database for use with the Stork Server, with the stork database user and stork pass-
word. Next, a database called stork is created and the pgcrypto extension is enabled in the database.

First, connect to PostgreSQL using psql and the postgres administration user. Depending on your system configuration,
this may require switching to postgres user, using su postgres command first.

$ psql postgres
psql (11.5)
Type "help" for help.
postgres=#

Then, prepare the database:

5

https://www.postgresql.org/

Stork, Release 0.12.0

postgres=# CREATE USER stork WITH PASSWORD 'stork';
CREATE ROLE
postgres=# CREATE DATABASE stork;
CREATE DATABASE
postgres=# GRANT ALL PRIVILEGES ON DATABASE stork TO stork;
GRANT
postgres=# \c stork
You are now connected to database "stork" as user "thomson".
stork=# create extension pgcrypto;
CREATE EXTENSION

Note: Make sure the actual password is stronger than ‘stork’ which is trivial to guess. Using default passwords is
a security risk. Stork puts no restrictions on the characters used in the database passwords nor on their length. In
particular, it accepts passwords containing spaces, quotes, double quotes and other special characters.

2.2 Database Migration Tool (optional)

Optional step: to initialize the database directly, the migrations tool must be built and used to initialize and upgrade the
database to the latest schema. However, this is completely optional, as the database migration is triggered automatically
upon server startup. This is only useful if for some reason it is desirable to set up the database but not yet run the server.
In most cases this step can be skipped.

$ rake build_migrations
$ backend/cmd/stork-db-migrate/stork-db-migrate init
$ backend/cmd/stork-db-migrate/stork-db-migrate up

The up and down command has an optional -t parameter that specifies desired schema version. This is only useful
when debugging database migrations.

$ # migrate up version 25
$ backend/cmd/stork-db-migrate/stork-db-migrate up -t 25
$ # migrate down back to version 17
$ backend/cmd/stork-db-migrate/stork-db-migrate down -t 17

Note the server requires the latest database version to run, will always run the migration on its own and will refuse
to start if migration fails for whatever reason. The migration tool is mostly useful for debugging problems with
migration or migrating the database without actually running the service. For complete reference, see manual page
here: stork-db-migrate - The Stork database migration tool.

To debug migrations, another useful feature is SQL tracing using the –db-trace-queries parameter. It takes either “all”
(trace all SQL operations, including migrations and run-time) or “run” (just run-time operations, skip migrations). If
specified without paraemter, “all” is assumed. With it enabled, stork-db-migrate will print out all its SQL queries on
stderr. For example, you can use these commands to generate an SQL script that will update your schema. Note that
for some migrations, the steps are dependent on the contents of your database, so this will not be an universal Stork
schema. This parameter is also supported by the Stork server.

$ backend/cmd/stork-db-migrate/stork-db-migrate down -t 0
$ backend/cmd/stork-db-migrate/stork-db-migrate up --db-trace-queries 2> stork-schema.
→˓txt

6 Chapter 2. Installation

Stork, Release 0.12.0

2.3 Installing from Packages

Stork packages are stored in repositories located on the Cloudsmith service: https://cloudsmith.io/~isc/repos/stork/
packages/. Both Debian/Ubuntu and RPM packages may be found there.

Detailed instructions for setting up the operating system to use this repository are available under the Set Me Up button
on the Cloudsmith repository page.

2.3.1 Installing on Debian/Ubuntu

The first step for both Debian and Ubuntu is:

$ curl -1sLf 'https://dl.cloudsmith.io/public/isc/stork/cfg/setup/bash.deb.sh' | sudo
→˓bash

Next, install the package with Stork Server:

$ sudo apt install isc-stork-server

Then, install Stork Agent:

$ sudo apt install isc-stork-agent

It is possible to install both agent and server on the same machine.

2.3.2 Installing on CentOS/RHEL/Fedora

The first step for RPM-based distributions is:

$ curl -1sLf 'https://dl.cloudsmith.io/public/isc/stork/cfg/setup/bash.rpm.sh' | sudo
→˓bash

Next, install the package with Stork Server:

$ sudo dnf install isc-stork-server

Then, install Stork Agent:

$ sudo dnf install isc-stork-agent

It is possible to install both agent and server on the same machine.

2.3.3 Initial Setup of the Stork Server

These steps are the same for both Debian-based and RPM-based distributions that use SystemD.

After installing Stork Server from the package, the basic settings must be configured. They are stored in /etc/
stork/server.env.

These are the required settings to connect with the database:

• STORK_DATABASE_HOST - the address of a PostgreSQL database; default is localhost

• STORK_DATABASE_PORT - the port of a PostgreSQL database; default is 5432

• STORK_DATABASE_NAME - the name of a database; default is stork

2.3. Installing from Packages 7

https://cloudsmith.io/~isc/repos/stork/packages/
https://cloudsmith.io/~isc/repos/stork/packages/

Stork, Release 0.12.0

• STORK_DATABASE_USER_NAME - the username for connecting to the database; default is stork

• STORK_DATABASE_PASSWORD - the password for the username connecting to the database

With those settings in place, the Stork Server service can be enabled and started:

$ sudo systemctl enable isc-stork-server
$ sudo systemctl start isc-stork-server

To check the status:

$ sudo systemctl status isc-stork-server

By default, the Stork Server web service is exposed on port 8080, so it can be visited in a web browser at
http://localhost:8080.

It is possible to put Stork Server behind an HTTP reverse proxy using Nginx or Apache. In the Stork Server
package an example configuration file is provided for Nginx, in /usr/share/stork/examples/nginx-stork.conf.

2.3.4 Initial Setup of the Stork Agent

These steps are the same for both Debian-based and RPM-based distributions that use SystemD.

After installing Stork Agent from the package, the basic settings must be configured. They are stored in /etc/
stork/agent.env.

These are the required settings to connect with the database:

• STORK_AGENT_ADDRESS - the IP address of the network interface which Stork Agent should use for
listening for Stork Server incoming connections; default is 0.0.0.0 (i.e. listen on all interfaces)

• STORK_AGENT_PORT - the port that should be used for listening; default is 8080

With those settings in place, the Stork Agent service can be enabled and started:

$ sudo systemctl enable isc-stork-agent
$ sudo systemctl start isc-stork-agent

To check the status:

$ sudo systemctl status isc-stork-agent

After starting, the agent periodically tries to detect installed Kea DHCP or BIND 9 services on the system. If it finds
them, they are reported to the Stork Server when it connects to the agent.

Further configuration and usage of the Stork Server and the Stork Agent are described in the Using Stork
chapter.

2.4 Installing from Sources

2.4.1 Prerequisites

Usually it more convenient to install Stork using native packages. However, you can build the sources on your own.
Stork is being tested on Ubuntu 18.04, 20.04, CentOS 7 and Fedora 31,32. It is likely the software can be built on
many other modern systems, but for the time being our testing capabilities are modest.

The dependencies needed to be installed to build Stork sources are:

8 Chapter 2. Installation

http://localhost:8080

Stork, Release 0.12.0

• Rake

• Java Runtime Environment (only if building natively, not using Docker)

• Docker (only if running in containers, this is needed to build the demo)

Other dependencies are installed automatically in a local directory by Rake tasks. This does not require root priv-
iledges. If you intend to run the demo environment, you need Docker and don’t need Java (Docker will install Java
within a container).

For details about the environment, please see the Stork wiki at https://gitlab.isc.org/isc-projects/stork/-/wikis/Install .

2.4.2 Download Sources

The Stork sources are available on the ISC GitLab instance: https://gitlab.isc.org/isc-projects/stork.

To get the latest sources invoke:

$ git clone https://gitlab.isc.org/isc-projects/stork

2.4.3 Building

There are several components of Stork:

• Stork Agent - this is the binary stork-agent, written in Go

• Stork Server - this is comprised of two parts: - backend service - written in Go - frontend - an Angular
application written in Typescript

All components can be built using the following command:

$ rake build_all

The agent component is installed using this command:

$ rake install_agent

and the server component with this command:

$ rake install_server

By default, all components are installed to the root folder in the current directory; however, this is not useful for
installation in a production environment. It can be customized via the DESTDIR variable, e.g.:

$ sudo rake install_server DESTDIR=/usr

2.4. Installing from Sources 9

https://gitlab.isc.org/isc-projects/stork/-/wikis/Install
https://gitlab.isc.org/isc-projects/stork

Stork, Release 0.12.0

10 Chapter 2. Installation

CHAPTER 3

Using Stork

This section describes how to use the features available in Stork. To connect to Stork, use a web browser and
connect to port 8080. If Stork is running on a localhost, it can be reached by navigating to http://localhost:8080.

3.1 Managing Users

A default administrator account is created upon initial installation of Stork. It can be used to sign in to the system via
the web UI, using the username admin and password admin.

To manage users, click on the Configuration menu and choose Users to see a list of existing users. There will
be at least one user, admin.

To add a new user, click Create User Account. A new tab opens to specify the new account parameters. Some
fields have specific restrictions:

• Username can consist of only letters, numbers, and an underscore (_).

• The e-mail field is optional, but if specified, it must be a well-formed e-mail.

• The firstname and lastname fields are mandatory.

• The password must only contain letters, digits, @, ., !, +, or -, and must be at least eight characters long.

Currently, users are associated with one of the two predefined groups (roles), i.e. super-admin or admin, which
must be selected when the user account is created. Users belonging to the super-admin group are granted full priv-
ileges in the system, including creation and management of user accounts. The admin group has similar privileges,
except that the users in this group are not allowed to manage other users’ accounts.

Once the new user account information has been specified and all requirements are met, the Save button becomes
active and the new account can be enabled.

11

http://localhost:8080

Stork, Release 0.12.0

3.2 Changing a User Password

An initial password is assigned by the administrator when a user account is created. Each user should change the
password when first logging into the system. To change the password, click on the Profile menu and choose
Settings to display the user profile information. Click on Change password in the menu bar on the left and
specify the current password in the first input box. The new password must be specified and confirmed in the second
and third input boxes, and must meet the password requirements specified in the previous section. When all entered
data is valid, the Save button is activated for changing the password.

3.3 Deploying Stork Agent

The Stork system uses agents to monitor services. Stork Agent is a daemon that must be deployed and run on
each machine to be monitored. Currently, there are no automated deployment routines and Stork Agent must be
installed manually. This can be done in one of two ways: from RPM or deb packages (described in the Installation
chapter), or by simply copying the Stork Agent binary to the destination machine manually. The packages are
usually far more convenient.

Assuming you choose to not use the packages, the Stork Agent binary can be copied manually. Assuming services
will be monitored on a machine with the IP 192.0.2.1, enter the following on the Stork server command line:

$ cd <stork-dir>
$ scp backend/cmd/stork-agent login@192.0.2.1:/path

On the machine to be monitored, start the agent by running:

$./stork-agent

It is possible to set the --host= or STORK_AGENT_ADDRESS environment variables to specify which address the
agent listens on. The --port or STORK_AGENT_PORT environment variables specify which TCP port the agent
listens on.

Normally, the agent will create a TCP socket on which to listen for commmands from a stork-server and create
exporters which export data to Prometheus. There are two command line flags which may be used to alter this
behavior. The --listen-stork-only flag instructs the agent to listen for commands from the Stork Server but
not for Prometheus requests. Conversely, the --listen-prometheus-only flag instructs the agent to listen for
Prometheus requests but not for commands from the Stork Server.

Note: Unless explicitly specified, the agent listens on all addresses on port 8080. There are no authentication
mechanisms implemented in the agent yet. Use with care!

3.4 Connecting and Monitoring Machines

3.4.1 Registering a New Machine

Once the agent is deployed and running on the machine to be monitored, the Stork Server must be instructed to
start monitoring it. This can be done via the Services menu, under Machines, to see a list of currently registered
machines.

To add a new machine, click Add New Machine and specify the machine address (IP address, hostname, or FQDN)
and a port.

12 Chapter 3. Using Stork

Stork, Release 0.12.0

After the Add button is clicked, the server attempts to establish a connection to the agent. Make sure that any active
firewalls will allow incoming connections to the TCP port specified.

Once a machine is added, a number of parameters are displayed, including hostname, address, agent version, number
of CPU cores, CPU load, available total memory, current memory utilization, uptime, OS, platform family, platform
name, OS version, kernel, virtualization details (if any), and host ID.

If any applications, i.e. Kea DHCP and/or BIND 9, are detected on this machine, the status of those applications is
displayed and the link allows navigation to the application details.

Navigation to the discovered applications is also possible through the Services menu.

3.4.2 Monitoring a Machine

Monitoring of registered machines is accomplished via the Services menu, under Machines. A list of currently regis-
tered machines is displayed, with multiple pages available if needed.

A filtering mechanism that acts as an omnibox is available. Via a typed string, Stork can search for an address, agent
version, hostname, OS, platform, OS version, kernel version, kernel architecture, virtualization system, or host-id
fields.

The state of a machine can be inspected by clicking its hostname; a new tab opens with the machine’s details. Multiple
tabs can be open at the same time, and clicking Refresh updates the available information.

The machine state can also be refreshed via the Action menu. On the Machines list, each machine has its own menu;
click on the triple-lines button at the right side and choose the Refresh option.

3.4.3 Deleting a Machine

To stop monitoring a machine, go to the Machines list, find the machine to stop monitoring, click on the triple-lines
button at the right side, and choose Delete. This will terminate the connection between the Stork server and the agent
running on the machine, and the server will no longer monitor it. However, the Stork agent process will continue
running on the machine. Complete shutdown of a Stork agent process must be done manually, e.g. by connecting to
the machine using ssh and stopping the agent there. One way to achieve that is to issue the killall stork-agent
command.

3.5 Monitoring Applications

3.5.1 Application Status

Kea DHCP and BIND 9 applications discovered on connected machines are listed via the top-level menu bar, under
Services. Both the Kea and BIND 9 applications can be selected; the list view includes the application version,
application status, and some machine details. The Action button is also available, to refresh the information about
the application.

The application status displays a list of daemons belonging to the application. For BIND 9, it is always only one
daemon, named. In the case of Kea, several daemons may be presented in the application status column, typically:
DHCPv4, DHCPv6, DDNS, and CA (Kea Control Agent).

For BIND 9, the Stork Agent is looking for the named in the process list and parses the configuration file that is given
with -c argument. If the named process is started without a specific configuration file, the Stork Agent will default
to /etc/bind/named.conf.

Stork uses rndc to retrieve the application status. It looks for the controls statement in the configuration file, and
uses the first listed control point for monitoring the application.

3.5. Monitoring Applications 13

Stork, Release 0.12.0

Furthermore, the Stork Agent can be used as a Prometheus exporter. Stork is able to do so if named is built
with json-c because it will gather statistics via the JSON statistics API. The named.conf file must have a
statistics-channel configured and the exporter will query the first listed channel. Stork is able to export
the most metrics if zone-statistics is set to full in the named.conf configuration.

For Kea, the listed daemons are those that Stork finds in the CA configuration file. A warning sign is displayed for
any daemons from the CA configuration file that are not running. In cases when the Kea installation is simply using
the default CA configuration file, which includes configuration of daemons that are never intended to be launched, it
is recommended to remove (or comment out) those configurations to eliminate unwanted warnings from Stork about
inactive daemons.

3.5.2 IPv4 and IPv6 Subnets per Kea Application

One of the primary configuration aspects of any network is the layout of IP addressing. This is represented in Kea
with IPv4 and IPv6 subnets. Each subnet represents addresses used on a physical link. Typically, certain parts of each
subnet (“pools”) are delegated to the DHCP server to manage. Stork is able to display this information.

One way to inspect the subnets and pools within Kea is by looking at each Kea application to get an overview of what
configurations a specific Kea application is serving. A list of configured subnets on that specific Kea application is
displayed. The following picture shows a simple view of the Kea DHCPv6 server running with a single subnet, with
three pools configured in it.

3.5.3 IPv4 and IPv6 Subnets in the Whole Network

It is convenient to see the complete overview of all subnets configured in the network being monitored by Stork.
Once at least one machine with the Kea application running is added to Stork, click on the DHCP menu and choose
Subnets to see all available subnets. The view shows all IPv4 and IPv6 subnets with the address pools and links to the
applications that are providing them. An example view of all subnets in the network is presented in the figure below.

There are filtering capabilities available in Stork; it is possible to choose whether to see IPv4 only, IPv6 only, or both.
There is also an omnisearch box available where users can type a search string. Note that for strings of four characters
or more, the filtering takes place automatically, while shorter strings require the user to hit Enter. For example, in the
above situation it is possible to show only the first (192.0.2.0/24) subnet by searching for the 0.2 string. One can also

14 Chapter 3. Using Stork

Stork, Release 0.12.0

search for specific pools, and easily filter the subnet with a specific pool, by searching for part of the pool ranges, e.g.
3.200.

Stork is able to display pool utilization for each subnet, and displays the absolute number of addresses allocated and
percentage of usage. There are two thresholds: 80% (warning; the pool utilization bar becomes orange) and 90%
(critical; the pool utilization bar becomes red).

Note: As of Stork 0.5.0, if two or more servers are handling the same subnet (e.g. a HA pair), the same subnet is
listed multiple times. This limitation will be addressed in future releases.

3.5.4 IPv4 and IPv6 Networks

Kea uses the concept of a shared network, which is essentially a stack of subnets deployed on the same physical link.
Stork is able to retrieve information about shared networks and aggregate it across all configured Kea servers. The
Shared Networks view allows for the inspection of networks and the subnets that belong in them. Pool utilization is
shown for each subnet.

3.5.5 Host Reservations

Kea DHCP servers can be configured to assign static resources or parameters to the DHCP clients communicating
with the servers. Most commonly these resources are the IP addresses or delegated prefixes. However, Kea also allows
for assigning hostnames, PXE boot parameters, client classes, DHCP options, and others. The mechanism by which a
given set of resources and/or parameters is associated with a given DHCP client is called “host reservations.”

A host reservation consists of one or more DHCP identifers used to associate the reservation with a client, e.g. MAC
address, DUID, or client identifier; and a collection of resources and/or parameters to be returned to the client if the
client’s DHCP message is associated with the host reservation by one of the identifiers. Stork can detect existing host
reservations specified both in the configuration files of the monitored Kea servers and in the host database backends
accessed via the Kea host_cmds premium hooks library. At present, Stork provides no means to update or delete host
reservations.

All reservations detected by Stork can be listed by selecting the DHCP menu option and then selecting Hosts.

The first column in the presented view displays one or more DHCP identifiers for each host in the format
hw-address=0a:1b:bd:43:5f:99, where hw-address is the identifier type. In this case, the identifier type
is the MAC address of the DHCP client for which the reservation has been specified. Supported identifier types are
described in the following sections of the Kea ARM: Host Reservation in DHCPv4 and Host Reservation in DHCPv6.
If multiple identifiers are present for a reservation, the reservation will be assigned when at least one of the identifiers
matches the received DHCP packet.

The second column, IP Reservations, includes the static assignments of the IP addresses and/or delegated pre-
fixes to the clients. There may be one or more IP reservations for each host.

The Hostname column contains an optional hostname reservation, i.e. the hostname assigned to the particular client
by the DHCP servers via the Hostname or Client FQDN option.

The Global/Subnet column contains the prefixes of the subnets to which the reserved IP addresses and prefixes
belong. If the reservation is global, i.e. is valid for all configured subnets of the given server, the word “global” is
shown instead of the subnet prefix.

Finally, the AppID @ Machine column includes one or more links to Kea applications configured to assign each
reservation to the client. The number of applications will typically be greater than one when Kea servers operate
in the High Availability setup. In this case, each of the HA peers uses the same configuration and may allocate IP
addresses and delegated prefixes to the same set of clients, including static assignments via host reservations. If HA
peers are configured correctly, the reservations they share will have two links in AppID @ Machine column. Next

3.5. Monitoring Applications 15

https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#host-reservation-in-dhcpv4
https://kea.readthedocs.io/en/latest/arm/dhcp6-srv.html#host-reservation-in-dhcpv6

Stork, Release 0.12.0

to each link there is a little label indicating whether the host reservation for the given server has been specified in its
configuration file or a host database (via host_cmds premium hooks library).

The Filter hosts input box is located above the Hosts table. It allows for filtering the hosts by identifier types,
identifier values, IP reservations, hostnames and by globality i.e. is:global and not:global. When filtering
by DHCP identifier values, it is not necessary to use colons between the pairs of hexadecimal digits. For exam-
ple, the reservation hw-address=0a:1b:bd:43:5f:99 will be found regardless of whether the filtering text is
1b:bd:43 or 1bbd43.

3.5.6 Sources of Host Reservations

There are two ways to configure the Kea servers to use host reservations. First, the host reservations can be specified
within the Kea configuration files; see Host Reservation in DHCPv4 for details. The other way is to use a host
database backend, as described in Storing Host Reservations in MySQL, PostgreSQL, or Cassandra. The second
solution requires the given Kea server to be configured to use the host_cmds premium hooks library. This library
implements control commands used to store and fetch the host reservations from the host database which the Kea
server is connected to. If the host_cmds hooks library is not loaded, Stork will only present the reservations specified
within the Kea configuration files.

Stork periodically fetches the reservations from the host database backends and updates them in the local database.
The default interval at which Stork refreshes host reservation information is set to 60 seconds. This means that an
update in the host reservation database will not be visible in Stork until up to 60 seconds after it was applied. This
interval is currently not configurable.

Note: As of the Stork 0.7.0 release, the list of host reservations must be manually refreshed by reloading the browser
page to observe the most recent updates fetched from the Kea servers.

3.5.7 Kea High Availability Status

When viewing the details of the Kea application for which High Availability is enabled (via the libdhcp_ha.so hooks
library), the High Availability live status is presented and periodically refreshed for the DHCPv4 and/or DHCPv6
daemon configured as primary or secondary/standby server. The status is not displayed for the server configured as an
HA backup. See the High Availability section in the Kea ARM for details about the roles of the servers within the HA
setup.

The following picture shows a typical High Availability status view displayed in the Stork UI.

The local server is the DHCP server (daemon) belonging to the application for which the status is displayed; the
remote server is its active HA partner. The remote server belongs to a different application running on a different
machine, and this machine may or may not be monitored by Stork. The statuses of both the local and the remote server
are fetched by sending the status-get command to the Kea server whose details are displayed (the local server). In
the load-balancing and hot-standby modes the local server periodically checks the status of its partner by sending the
ha-heartbeat command to it. Therefore, this information is not always up-to-date; its age depends on the heartbeat
command interval (typically 10 seconds). The status of the remote server includes the age of the data displayed.

The status information contains the role, state, and scopes served by each HA partner. In the usual HA case, both
servers are in load-balancing state, which means that both are serving DHCP clients and there is no failure. If the
remote server crashes, the local server transitions to the partner-down state, which will be reflected in this view. If the
local server crashes, this will manifest itself as a communication problem between Stork and the server.

As of Stork 0.8.0 release, the High Availability view may also contain the information about the heartbeat status
between the two servers and the information about the failover progress. This information is only available while
monitoring Kea 1.7.8 versions and later.

16 Chapter 3. Using Stork

https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#host-reservation-in-dhcpv4
https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#storing-host-reservations-in-mysql-postgresql-or-cassandra
https://kea.readthedocs.io/en/latest/arm/hooks.html#ha-high-availability
https://kea.readthedocs.io/en/latest/arm/hooks.html#the-status-get-command

Stork, Release 0.12.0

The failover progress information is only presented when one of the active servers has been unable to communicate
with the partner via the heartbeat exchange for a time exceeding the max-heartbeat-delay threshold. If the server is
configured to monitor the DHCP traffic directed to the partner to verify that the partner is not responding to this traffic
before transitioning to the partner-down state, the information about the number of unacked clients (clients which
failed to get the lease), connecting clients (all clients currently trying to get the lease from the partner) and the number
of analyzed packets are displayed. The system administrator may use this information to diagnose why the failover
transition has not taken place or when such transition is likely to happen.

More about High Availability status information provided by Kea can be found in the Kea ARM.

3.5.8 Viewing Kea Log

Stork offers a simple logs viewing mechanism to diagnose issues with monitored applications.

Note: As of Kea 0.10 release, this mechanism only supports viewing Kea log files. Viewing BIND9 logs is not
supported yet. Monitoring other logging locations such as: stdout, stderr or syslog is also not supported.

Kea can be configured to log into multiple destinations. Different types of log messages may be output into different
log files, syslog, stdout or stderr. The list of log destinations used by the Kea application is available on the Kea app
page. Click on the Kea app whose logs you want to view. Next, select the Kea daemon by clicking on one of the tabs,
e.g. DHCPv4 tab. Scroll down to the Loggers section.

This section contains a table with a list of configured loggers for the selected daemon. For each configured logger the
logger’s name, logging severity and output location are presented. The possible output locations are: log file, stdout,
stderr or syslog. It is only possible to view the logs output to the log files. Therefore, for each log file there is a link
which leads to the log viewer showing the selected file’s contents. The loggers which output to the stdout, stderr and
syslog are also listed but the links to the log viewer are not available for them.

Clicking on the selected log file navigates to the log viewer for this file. By default, the viewer displays the tail of
the log file up to 4000 characters. Depending on the network latency and the size of the log file, it may take several
seconds or more before the log contents are fetched and displayed.

The log viewer title bar comprises three buttons. The button with the refresh icon triggers log data fetch without
modifying the size of the presented data. Clicking on the + button extends the size of the viewed log tail by 4000
characters and refreshes the data in the log viewer. Conversely, clicking on the - button reduces the amount of

3.5. Monitoring Applications 17

https://kea.readthedocs.io/en/latest/arm/hooks.html#the-status-get-command

Stork, Release 0.12.0

presented data by 4000 characters. Every time any of these buttons is clicked, the viewer discards currently presented
data and displays the latest part of the log file tail.

Please keep in mind that extending the size of the viewed log tail may cause slowness of the log viewer and network
congestion as you increase the amount of data fetched from the monitored machine.

3.6 Dashboard

The Main Stork page presents a dashboard. It contains a panel with information about DHCP and a panel with events
observed or noticed by Stork server.

3.6.1 DHCP Panel

DHCP panel includes two sections: one for DHCPv4 and one for DHCPv6. Each section contains 3 kinds of informa-
tion:

• list of up to 5 subnets with the highest pool utilization

• list of up to 5 shared networks with the highest pool utilization

• statistics about DHCP

3.6.2 Events Panel

Events panel presents the list of the most recent events captured by the Stork server. There are 3 urgency levels of the
events: info, warning and error. Events pertaining to the particular entities, e.g. machines or applications, provide a
link to a web page containing the information about the given object.

3.7 Events Page

Events page presents a list of all events. It allows for filtering events by:

• urgency level,

• machine,

• application type (Kea, BIND 9)

• daemon type (DHCPv4, DHCPv6, named, etc)

• user who caused given event (this is available to super-admin group only)

18 Chapter 3. Using Stork

CHAPTER 4

Backend API

Stork Agent provides a REST API. The API is generated using [Swagger](https://swagger.io/). The API points are
currently documented in the api/swagger.yaml file.

Note: In future Stork releases, the API documentation will be generated automatically.

19

https://swagger.io/

Stork, Release 0.12.0

20 Chapter 4. Backend API

CHAPTER 5

Developer’s Guide

Note: We acknowledge that users and developers have different needs, so the user and developer documents should
eventually be separated. However, since the project is still in its early stages, this section is kept in the Stork ARM for
convenience.

5.1 Rakefile

Rakefile is a script for performing many development tasks like building source code, running linters, running unit
tests, and running Stork services directly or in Docker containers.

There are several other Rake targets. For a complete list of available tasks, use rake -T. Also see the Stork wiki for
detailed instructions.

5.2 Generating Documentation

To generate documentation, simply type rake doc. Sphinx and rtd-theme must be installed. The generated docu-
mentation will be available in the doc/singlehtml directory.

5.3 Setting Up the Development Environment

The following steps install Stork and its dependencies natively, i.e. on the host machine, rather than using Docker
images.

First, PostgreSQL must be installed. This is OS-specific, so please follow the instructions from the Installation chapter.

Once the database environment is set up, the next step is to build all the tools. Note the first command below downloads
some missing dependencies and installs them in a local directory. This is done only once and is not needed for future
rebuilds, although it is safe to rerun the command.

21

https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment#building-testing-and-running-stork
http://www.sphinx-doc.org
https://github.com/readthedocs/sphinx_rtd_theme

Stork, Release 0.12.0

$ rake build_backend
$ rake build_ui

The environment should be ready to run! Open three consoles and run the following three commands, one in each
console:

$ rake run_server

$ rake serve_ui

$ rake run_agent

Once all three processes are running, connect to http://localhost:8080 via a web browser. See Using Stork for initial
password information or for adding new machines to the server.

The run_agent runs the agent directly on the current operating system, natively; the exposed port of the agent is 8888.

There are other Rake tasks for running preconfigured agents in Docker containers. They are exposed to the host on
specific ports.

When these agents are added as machines in the Stork Server UI, both a localhost address and a port specific to
a given container must be specified. This is a list of ports for particular Rake tasks and containers:

• rake run_kea_container: Kea with DHCPv4, port 8888

• rake run_kea6_container: Kea with DHCPv6, port 8886

• rake run_kea_ha_containers (2 containers): Kea 1 and 2 with preconfigured HA, ports 8881 and 8882

• rake run_bind9_container: port 9999

5.3.1 Installing Git Hooks

There is a simple git hook that inserts the issue number in the commit message automatically; to use it, go to the
utils directory and run the git-hooks-install script. It will copy the necessary file to the .git/hooks
directory.

5.4 Agent API

The connection between the server and the agents is established using gRPC over http/2. The agent API definition is
kept in the backend/api/agent.proto file. For debugging purposes, it is possible to connect to the agent using
the grpcurl tool. For example, a list of currently provided gRPC calls may be retrieved with this command:

$ grpcurl -plaintext -proto backend/api/agent.proto localhost:8888 describe
agentapi.Agent is a service:
service Agent {

rpc detectServices (.agentapi.DetectServicesReq) returns (.agentapi.
→˓DetectServicesRsp);
rpc getState (.agentapi.GetStateReq) returns (.agentapi.GetStateRsp);
rpc restartKea (.agentapi.RestartKeaReq) returns (.agentapi.RestartKeaRsp);

}

Specific gRPC calls can also be made. For example, to get the machine state, the following command can be used:

22 Chapter 5. Developer’s Guide

http://localhost:8080
https://github.com/fullstorydev/grpcurl

Stork, Release 0.12.0

$ grpcurl -plaintext -proto backend/api/agent.proto localhost:8888 agentapi.Agent.
→˓getState
{

"agentVersion": "0.1.0",
"hostname": "copernicus",
"cpus": "8",
"cpusLoad": "1.68 1.46 1.28",
"memory": "16",
"usedMemory": "59",
"uptime": "2",
"os": "darwin",
"platform": "darwin",
"platformFamily": "Standalone Workstation",
"platformVersion": "10.14.6",
"kernelVersion": "18.7.0",
"kernelArch": "x86_64",
"hostID": "c41337a1-0ec3-3896-a954-a1f85e849d53"

}

5.5 ReST API

The primary user of the ReST API is the Stork UI in a web browser. The definition of the ReST API is located in the
api folder and is described in Swagger 2.0 format.

The description in Swagger is split into multiple files. Two files comprise a tag group:

• *-paths.yaml - defines URLs

• *-defs.yaml - contains entity definitions

All these files are combined by the yamlinc tool into a single Swagger file swagger.yaml. Then, swagger.
yaml generates code for:

• the UI fronted by swagger-codegen

• the backend in Go lang by go-swagger

All these steps are accomplished by Rakefile.

5.6 Backend Unit Tests

There are unit tests for backend part (agent and server) written in Go. They can be run using Rake:

$ rake unittest_backend

This requires preparing a database in PostgreSQL. One way to avoid doing this manually is by using a docker container
with PostgreSQL which is automatically created when running the following Rake task:

$ rake unittest_backend_db

This one task spawns a container with PostgreSQL in the background and then it runs unit tests. When the tests are
completed the database is shutdown and removed.

5.5. ReST API 23

Stork, Release 0.12.0

5.6.1 Unit Tests Database

When docker container with a database is not used for unit tests, the PostgreSQL server must be stared and the
following role must be created:

postgres=# CREATE USER storktest WITH PASSWORD 'storktest';
CREATE ROLE
postgres=# ALTER ROLE storktest SUPERUSER;
ALTER ROLE

To point unit tests to our specific database set POSTGRES_ADDR environment variable, e.g.:

$ rake unittest_backend POSTGRES_ADDR=host:port

By default it points to localhost:5432.

Similarly, if the db setup requires a password other than the default storktest, it’s convenient to set up PGPASS-
WORD variable accordingly. This can be done the following way:

$ rake unittest_backend PGPASSWORD=secret123

Note there’s no need to create the storktest database itself. It is created and destroyed by the Rakefile task.

5.6.2 Unit Tests Coverage

At the end of tests execution there is coverage report presented. If coverage of any module is below a threshold of
35% then an error is raised.

5.7 Docker Containers

To ease testing, there are several Docker containers available.

• server - This container is essential. It runs the Stork server, which interacts with all the agents and the
database and exposes the API. Without it, Stork will not be able to function.

• postgres - This container is essential. It runs the PostgreSQL database that is used by the Stork server.
Without it, the Stork server will produce error messages about an unavailable database.

• webui - This container is essential in most circumstances. It provides the front-end web interface. It is poten-
tially unnecessary with the custom development of a Stork API client.

There are also several containers provided that are used to samples and they are not strictly necessary. The following
containers will not be needed in a production network, however they’re very useful to demonstrate existing Stork
capabilities. They simulate certain services that Stork is able to handle:

• agent-bind9 - This container runs a BIND 9 server. With this container, the agent can be added as a machine
and Stork will begin monitoring its BIND 9 service.

• agent-bind9-2 - This container also runs a BIND 9 server, for the purpose of experimenting with two
different DNS servers.

• agent-kea - This container runs a Kea DHCPv4 server. With this container, the agent can be added as a
machine and Stork will begin monitoring its Kea DHCPv4 service.

• agent-kea-ha1 and agent-kea-ha2 - These two containers should, in general, be run together. They
each have a Kea DHCPv4 server instance configured in a HA pair. With both running and registered as machines

24 Chapter 5. Developer’s Guide

Stork, Release 0.12.0

in Stork, users can observe certain HA mechanisms, such as one taking over the traffic if the partner becomes
unavailable.

• traffic-dhcp - This container is optional. If started, it can be used to transmit DHCP packets to
agent-kea. It may be useful to observe non-zero statistics coming from Kea. When running Stork in Docker,
rake start_traffic_dhcp can be used to conveniently control traffic.

• traffic-dns - This container is optional. If stated, it can be used to transmit DNS packets towards agent-
bind9. It may be useful to observe non-zero statistics coming from BIND 9. If you’re running Stork in docker,
you can conveniently control that using rake start_traffic_dns.

• prometheus - This is a container with Prometheus for monitoring applications. It is preconfigured to monitor
Kea and BIND 9 containers.

• grafana - This is a container with Grafana, a dashboard for Prometheus. It is preconfigured to pull data from
a Prometheus container and show Stork dashboards.

5.8 Packaging

There are scripts for packaging the binary form of Stork. There are two supported formats:

• RPM

• deb

The RPM package is built on the latest CentOS version. The deb package is built on the latest Ubuntu LTS.

There are two packages built for each system: a server and an agent.

There are Rake tasks that perform the entire build procedure in a Docker container: build_rpms_in_docker and
build_debs_in_docker. It is also possible to build packages directly in the current operating system; this is provided
by the deb_agent, rpm_agent, deb_server, and rpm_server Rake tasks.

Internally, these packages are built by FPM (https://fpm.readthedocs.io/). The containers that are used to build pack-
ages are prebuilt with all dependencies required, using the build_fpm_containers Rake task. The definitions of these
containers are placed in docker/pkgs/centos-8.txt and docker/pkgs/ubuntu-18-04.txt.

5.8. Packaging 25

https://fpm.readthedocs.io/

Stork, Release 0.12.0

26 Chapter 5. Developer’s Guide

CHAPTER 6

Demo

A demo installation of Stork can be used to demonstrate Stork capabilities but can be used for its development as
well.

The demo installation uses Docker and Docker Compose to set up all Stork services. It contains:

• Stork Server

• Stork Agent with Kea DHCPv4

• Stork Agent with Kea DHCPv6

• Stork Agent with Kea HA-1 (high availability server 1)

• Stork Agent with Kea HA-2 (high availability server 2)

• Stork Agent with BIND 9

• Stork Environment Simulator

• PostgreSQL database

• Prometheus & Grafana

These services allow observation of many Stork features.

6.1 Requirements

Running the Stork Demo requires the same dependencies as building Stork, which is described in the Installing
from Sources chapter.

Besides the standard dependencies, the Stork Demo requires:

• Docker

• Docker Compose

For details, please see the Stork wiki https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment.

27

https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment

Stork, Release 0.12.0

6.2 Installation Steps

The following command retrieves all required software (go, goswagger, nodejs, Angular dependencies, etc.) to the
local directory. No root password is necessary. Then it prepares Docker images and starts them up.

$ rake docker_up

Once the build process finishes, the Stork UI is available at http://localhost:8080/. Use any browser to connect.

The installation procedure creates several Docker images:

• stork_webui: a web UI interface,

• stork_server: a server backend,

• postgres: a PostgreSQL database used by the server,

• stork_agent-bind9: an agent with BIND 9,

• stork_agent-bind9-2: a second agent with BIND 9,

• stork_agent-kea: an agent with a Kea DHCPv4 server,

• stork_agent-kea6: an agent with a Kea DHCPv6 server,

• stork_agent-kea-ha1: the primary Kea DHCPv4 server in High Availability mode,

• stork_agent-kea-ha2: the secondary Kea DHCPv4 server in High Availability mode,

• traffic-dhcp: a web application that can run DHCP traffic using perfdhcp,

• traffic-dns: a web application that can run DNS traffic using dig and flamethrower,

• prometheus: Prometheus, a monitoring solution (https://prometheus.io/),

• grafana: Grafana, a dashboard for Prometheus (https://grafana.com/)

Note: The containers running the Kea and BIND 9 applications are for demo purposes only. They allow users to
quickly start experimenting with Stork without having to manually deploy Kea and/or BIND 9 instances.

The PostgreSQL database schema is automatically migrated to the latest version required by the Stork server process.

The installation procedure assumes those images are fully under Stork control. If there are existing images, they will
be overwritten.

6.2.1 Premium Features

It is possible to run the demo with premium features enabled in Kea apps. It requires starting the demo with an access
token to the Kea premium repositories. Access tokens can be found on https://cloudsmith.io/~isc/repos/kea-1-7-prv/
setup/#formats-deb. The token can be found inside this URL on that page: https://dl.cloudsmith.io/
<access token>/isc/kea-1-7-prv/cfg/setup/bash.deb.sh. This web page and the token are avail-
able only to ISC employees and paid customers of ISC.

$ rake docker_up cs_repo_access_token=<access token>

28 Chapter 6. Demo

http://localhost:8080/
https://prometheus.io/
https://grafana.com/
https://cloudsmith.io/~isc/repos/kea-1-7-prv/setup/#formats-deb
https://cloudsmith.io/~isc/repos/kea-1-7-prv/setup/#formats-deb

Stork, Release 0.12.0

6.3 Initialization

Stork Server requires some initial information:

1. Go to http://localhost:8080/machines/all

2. Add new machines (leave the default port):

1. agent-kea

2. agent-kea6

3. agent-kea-ha1

4. agent-kea-ha2

5. agent-bind9

6. agent-bind9-2

6.4 Stork Environment Simulator

Stork Environment Simulator allows:

• sending DHCP traffic to Kea applications

• sending DNS requests to BIND 9 applications

• stopping and starting Stork Agents, Kea and BIND 9 daemons

Stork Environment Simulator allows DHCP traffic to be sent to selected subnets pre-configured in Kea instances, with
a limitation: it is possible to send traffic to only one subnet from a given shared network.

Stork Environment Simulator also allows sending DNS traffic to selected DNS servers.

Stork Environment Simulator can add all the machines available in the demo setup. It can stop and start selected Stork
Agents, and Kea and BIND 9 applications. This is useful to simulate communication problems between applications,
Stork Agents and the Stork Server.

Stork Environment Simulator can be found at: http://localhost:5000/

For development purposes simulator can be started directly by command:

$ rake run_sim

6.5 Prometheus

The Prometheus instance is preconfigured and pulls statistics from:

• node exporters: agent-kea:9100, agent-bind9:9100, agent-bind9:9100

• kea exporters embedded in stork-agent: agent-kea:9547, agent-kea6:9547, agent-kea-ha1:9547, agent-kea-
ha2:9547

• bind exporters embedded in stork-agent: agent-bind9:9119, agent-bind9-2:9119

The Prometheus web page can be found at: http://localhost:9090/

6.3. Initialization 29

http://localhost:8080/machines/all
http://localhost:5000/
http://localhost:9090/

Stork, Release 0.12.0

6.6 Grafana

The Grafana instance is preconfigured as well. It pulls data from Prometheus and loads dashboards from the Stork
repository, in the Grafana folder.

The Grafana web page can be found at: http://localhost:3000/

30 Chapter 6. Demo

http://localhost:3000/

CHAPTER 7

Manual Pages

7.1 stork-server - The central Stork server

7.1.1 Synopsis

stork-server

7.1.2 Description

The stork-server provides the main Stork Server capabilities. In every Stork deployment, there should be exactly
one stork-server.

7.1.3 Arguments

The Stork Server takes the following arguments:

-h or --help displays list of available parameters.

-v or --version returns stork-server version.

-d or --db-name= the name of the database to connect to (default: stork) [$STORK_DATABASE_NAME]

-u or --db-user the user name to be used for database connections (default: stork)
[$STORK_DATABASE_USER_NAME]

--db-host the name of the host where database is available (default: localhost) [$STORK_DATABASE_HOST]

-p or --db-port the port on which the database is available (default: 5432) [$STORK_DATABASE_PORT]

--db-trace-queries= enable tracing SQL queries: run (only runtime, without migrations), all (migrations
and run-time)), all is the default and covers both migrations and run-time.enable tracing SQL queries
[$STORK_DATABASE_TRACE]

--rest-cleanup-timeout grace period for which to wait before killing idle connections (default: 10s)

31

Stork, Release 0.12.0

--rest-graceful-timeout grace period for which to wait before shutting down the server (default: 15s)

--rest-max-header-size controls the maximum number of bytes the server will read parsing the request
header’s keys and values, including the request line. It does not limit the size of the request body. (default:
1MiB)

--rest-host the IP to listen on for connections over ReST API [$STORK_REST_HOST]

--rest-port the port to listen on for connections over ReST API (default: 8080) [$STORK_REST_PORT]

--rest-listen-limit limit the number of outstanding requests

--rest-keep-alive set the TCP keep-alive timeouts on accepted connections. It prunes dead TCP connections
(e.g. closing laptop mid-download) (default: 3m)

--rest-read-timeout maximum duration before timing out read of the request (default: 30s)

--rest-write-timeout maximum duration before timing out write of the response (default: 60s)

--rest-tls-certificate the certificate to use for secure connections
[$STORK_REST_TLS_CERTIFICATE]

--rest-tls-key the private key to use for secure connections [$STORK_REST_TLS_PRIVATE_KEY]

--rest-tls-ca the certificate authority file to be used with mutual tls auth
[$STORK_REST_TLS_CA_CERTIFICATE]

--rest-static-files-dir directory with static files for UI [$STORK_REST_STATIC_FILES_DIR]

Note there is no argument for database password, as the command line arguments can sometimes be seen by other
users. You can pass it using STORK_DATABASE_PASSWORD variable.

7.1.4 Mailing Lists and Support

There are public mailing lists available for the Stork project. stork-users (stork-users at lists.isc.org) is intended for
Stork users. stork-dev (stork-dev at lists.isc.org) is intended for Stork developers, prospective contributors, and other
advanced users. The lists are available at https://lists.isc.org. The community provides best-effort support on both of
those lists.

Once stork will become more mature, ISC will be providing professional support for Stork services.

7.1.5 History

The stork-server was first coded in November 2019 by Michal Nowikowski and Marcin Siodelski.

7.1.6 See Also

stork-agent(8)

7.2 stork-agent - Stork agent that monitors BIND 9 and Kea services

7.2.1 Synopsis

stork-agent [–host] [–port]

32 Chapter 7. Manual Pages

https://lists.isc.org

Stork, Release 0.12.0

7.2.2 Description

The stork-agent is a small tool that is being run on the systems that are running BIND 9 and Kea services. Stork
server connects to the Stork Agent and uses it to monitor services remotely.

7.2.3 Arguments

Stork does not use explicit configuration file. Instead, its behavior can be controlled with command line switches
and/or variables. The Stork Agent takes the following command line switches. Equivalent environment variables are
listed in square brackets, where applicable.

--listen-stork-only listen for commands from the Stork Server only, but not for Prometheus requests.
[$STORK_AGENT_LISTEN_STORK_ONLY]

--listen-prometheus-only listen for Prometheus requests only, but not for commands from the Stork Server.
[$STORK_AGENT_LISTEN_PROMETHEUS_ONLY]

-v or --version show software version.

Stork Server flags:

--host= the IP or hostname to listen on for incoming Stork server connection. [$STORK_AGENT_ADDRESS]

--port= the TCP port to listen on for incoming Stork server connection. (default: 8080)
[$STORK_AGENT_PORT]

Prometheus Kea Exporter flags:

--prometheus-kea-exporter-host= the IP or hostname to listen on for incoming Prometheus connection
(default: 0.0.0.0) [$STORK_AGENT_PROMETHEUS_KEA_EXPORTER_ADDRESS]

--prometheus-kea-exporter-port= the port to listen on for incoming Prometheus connection (default:
9547) [$STORK_AGENT_PROMETHEUS_KEA_EXPORTER_PORT]

--prometheus-kea-exporter-interval= specifies how often the agent collects stats from Kea, in seconds
(default: 10) [$STORK_AGENT_PROMETHEUS_KEA_EXPORTER_INTERVAL]

Prometheus BIND 9 Exporter flags:

--prometheus-bind9-exporter-host= the IP or hostname to listen on for incoming Prometheus connec-
tion (default: 0.0.0.0) [$STORK_AGENT_PROMETHEUS_BIND9_EXPORTER_ADDRESS]

--prometheus-bind9-exporter-port= the port to listen on for incoming Prometheus connection (default:
9119) [$STORK_AGENT_PROMETHEUS_BIND9_EXPORTER_PORT]

--prometheus-bind9-exporter-interval= specifies how often the agent collects stats from BIND 9, in
seconds (default: 10) [$STORK_AGENT_PROMETHEUS_BIND9_EXPORTER_INTERVAL]

-h or --help displays list of available parameters.

7.2.4 Mailing Lists and Support

There are public mailing lists available for the Stork project. stork-users (stork-users at lists.isc.org) is intended for
Stork users. stork-dev (stork-dev at lists.isc.org) is intended for Stork developers, prospective contributors, and other
advanced users. The lists are available at https://lists.isc.org. The community provides best-effort support on both of
those lists.

Once stork will become more mature, ISC will be providing professional support for Stork services.

7.2. stork-agent - Stork agent that monitors BIND 9 and Kea services 33

https://lists.isc.org

Stork, Release 0.12.0

7.2.5 History

The stork-agent was first coded in November 2019 by Michal Nowikowski.

7.2.6 See Also

stork-server(8)

7.3 stork-db-migrate - The Stork database migration tool

7.3.1 Synopsis

stork-db-migrate [options] command

7.3.2 Description

The stork-db-migrate is an optional tool that assists the database schema migrations. Usually, there is no need
to use this tool, as Stork server always runs the migration scripts on startup. However, it may be useful for debugging
and manual migrations.

7.3.3 Arguments

The Stork DB migration tools takes the following commands:

Available commands:

down Revert last migration (or use -t to migrate to specific version)

init Create schema versioning table in the database

reset Revert all migrations

set_version Set database version without running migrations

up Run all available migrations (or use -t to migrate to specific version)

version Print current migration version

Application Options:

-d, --db-name= the name of the database to connect to (default: stork) [$STORK_DATABASE_NAME]

-u, --db-user= the user name to be used for database connections (default: stork)
[$STORK_DATABASE_USER_NAME]

--db-host= the name of the host where database is available (default: localhost) [$STORK_DATABASE_HOST]

-p, --db-port= the port on which the database is available (default: 5432) [$STORK_DATABASE_PORT]

--db-trace-queries= enable tracing SQL queries: run (only runtime, without migrations), all (migrations
and run-time)), all is the default and covers both migrations and run-time.enable tracing SQL queries
[$STORK_DATABASE_TRACE]

-h, --help show help message

Note there is no argument for database password, as the command line arguments can sometimes be seen by other
users. You can pass it using STORK_DATABASE_PASSWORD variable.

34 Chapter 7. Manual Pages

Stork, Release 0.12.0

7.3.4 Mailing Lists and Support

There are public mailing lists available for the Stork project. stork-users (stork-users at lists.isc.org) is intended for
Stork users. stork-dev (stork-dev at lists.isc.org) is intended for Stork developers, prospective contributors, and other
advanced users. The lists are available at https://lists.isc.org. The community provides best-effort support on both of
those lists.

Once stork will become more mature, ISC will be providing professional support for Stork services.

7.3.5 History

The stork-db-migrate was first coded in October 2019 by Marcin Siodelski.

7.3.6 See Also

stork-agent(8), stork-server(8)

7.3. stork-db-migrate - The Stork database migration tool 35

https://lists.isc.org

Stork, Release 0.12.0

36 Chapter 7. Manual Pages

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

37

	Overview
	Goals
	Architecture

	Installation
	Prerequisites
	Database Migration Tool (optional)
	Installing from Packages
	Installing on Debian/Ubuntu
	Installing on CentOS/RHEL/Fedora
	Initial Setup of the Stork Server
	Initial Setup of the Stork Agent

	Installing from Sources
	Prerequisites
	Download Sources
	Building

	Using Stork
	Managing Users
	Changing a User Password
	Deploying Stork Agent
	Connecting and Monitoring Machines
	Registering a New Machine
	Monitoring a Machine
	Deleting a Machine

	Monitoring Applications
	Application Status
	IPv4 and IPv6 Subnets per Kea Application
	IPv4 and IPv6 Subnets in the Whole Network
	IPv4 and IPv6 Networks
	Host Reservations
	Sources of Host Reservations
	Kea High Availability Status
	Viewing Kea Log

	Dashboard
	DHCP Panel
	Events Panel

	Events Page

	Backend API
	Developer’s Guide
	Rakefile
	Generating Documentation
	Setting Up the Development Environment
	Installing Git Hooks

	Agent API
	ReST API
	Backend Unit Tests
	Unit Tests Database
	Unit Tests Coverage

	Docker Containers
	Packaging

	Demo
	Requirements
	Installation Steps
	Premium Features

	Initialization
	Stork Environment Simulator
	Prometheus
	Grafana

	Manual Pages
	stork-server - The central Stork server
	Synopsis
	Description
	Arguments
	Mailing Lists and Support
	History
	See Also

	stork-agent - Stork agent that monitors BIND 9 and Kea services
	Synopsis
	Description
	Arguments
	Mailing Lists and Support
	History
	See Also

	stork-db-migrate - The Stork database migration tool
	Synopsis
	Description
	Arguments
	Mailing Lists and Support
	History
	See Also

	Indices and tables

