

[image: _images/stork-square-200px.png]

Stork Administrator Reference Manual

Stork is a new project proposed by ISC with the aim of delivering BIND 9 and Kea dashboard.
It is going to be a spiritual successor of earlier attempts - Kittiwake and Antherius.
It is currently in very early stages of planning.

This is the reference guide for Stork version 0.4.0.
Links to the most up-to-date version of this document, along with other documents for
Stork, can be found in ISC’s Stork project homepage [https://gitlab.isc.org/isc-projects/stork]
or readthedocs [https://stork.readthedocs.io] .

	1. Stork Installation
	1.1. Installation using Docker

	1.2. Native Installation

	2. Using Stork
	2.1. Managing users

	2.2. Changing User Password

	2.3. Deploying Stork Agent

	2.4. Connecting and Monitoring Machines
	2.4.1. Registering New Machine

	2.4.2. Monitoring Machines

	2.4.3. Deleting Machines

	2.5. Monitoring Applications
	2.5.1. Application Status

	2.5.2. IPv4 and IPv6 Subnets per Kea Application

	2.5.3. IPv4 and IPv6 Subnets in the whole Network

	2.5.4. Kea High Availability Status

	2.6. Dashboard

	3. Backend API

	4. Developer’s Guide
	4.1. Generating Documentation

	4.2. Agent API

	4.3. Installing git hooks

	4.4. ReST API

Appendices

	Manual Pages

Indices and tables

	Index

	Module Index

	Search Page

1. Stork Installation

Stork is in its very early stages of development. As such, it is currently only supported on Ubuntu
18.04. It is likely that the code would work on many other systems, but for the time being we want
to focus on the core development, rather than portability issues.

There are several dependencies that needs to be installed:

	rake

	Java Runtime Environment

	Docker and Docker Compose (when installing using Docker)

For details, please see Stork wiki
https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment .
Note the Stork project is in very early stages and its building
instructions change frequently. Please refer to the wiki page in case
of problems.

For ease of deployment, Stork uses Rake to automate compilation and installation.
It facilitates installation both using Docker and without Docker (see the
following sections).

1.1. Installation using Docker

The following command will retrieve all required software (go, goswagger, nodejs, Angular
dependencies, etc.) to your local directory. No root password necessary. Note that Docker
installation is optional. Using docker is the easiest installation method. However, if you prefer to
install it on your host, see the next section about Native installation.

Prepare docker images and start them up
rake docker_up

Once the build process finishes, Stork UI will be available at http://localhost:8080/. Use
any browser to connect.

The installation procedure will create several Docker images:

	stork_webui: exposing web UI interface,

	stork_server: running a server backend,

	postgres: running a PostgreSQL database used by the server,

	stork_agent-bind9: running an demo instance of BIND 9,

	stork_agent-kea: running a demo instance of Kea DHCPv4 server,

	stork_agent-kea-ha1: running the primary Kea DHCPv4 server in High Availability mode,

	stork_agent-kea-ha2: running the secondary Kea DHCPv4 server in High Availability mode

Note

The containers running Kea and BIND 9 applications are for demo purposes only. They
allow the users to quickly start playing with Stork without having to manually
deploy Kea and/or BIND 9 instances.

The PostgreSQL database schema will be automatically migrated to the latest version required
by the Stork server process.

The installation procedure assumes those images are fully under Stork control. If there are
existing images, they will be overwritten.

There are several other rake targets. For a complete list of available tasks, use rake -T.
Also see wiki [https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment#building-testing-and-running-stork]
for detailed build instructions.

1.2. Native Installation

The following steps will install Stork and its dependencies natively, i.e. on the host machine
rather than using Docker images.

First, you need to install PostgreSQL. This is OS specific. Please follow up the instructions for your
system.

$ psql postgres
psql (11.5)
Type "help" for help.

postgres=# CREATE USER stork WITH PASSWORD 'stork';
CREATE ROLE
postgres=# CREATE DATABASE stork;
CREATE DATABASE
postgres=# GRANT ALL PRIVILEGES ON DATABASE stork TO stork;
GRANT
postgres=# \c stork
You are now connected to database "stork" as user "thomson".
stork=# create extension pgcrypto;
CREATE EXTENSION

Optional step: if you want to initialize the database on your own, you need to build the migrations
and use it to initialize and upgrade the DB to the latest schema. However, this is completely
optional as the database migration will be triggered automatically upon the server startup.
This is only useful if for some reason you want to set up the database, but don’t want to run
the server yet. In most cases this step can be skipped.

$ rake build_migrations
$ backend/cmd/stork-db-migrate/stork-db-migrate init
$ backend/cmd/stork-db-migrate/stork-db-migrate up

Now that you have the database environment set up, the next step is to build all the tools. Note the first
command will download some missing dependencies needed and will install it in a local directory. This is
done only once and is not needed for future rebuilds. However, it’s safe to rerun the command.

$ rake build_backend
$ rake build_ui

The environment should be ready to run! Open 3 consoles, and run the following 3 commands, one in each
console:

$ rake run_server
$ rake serve_ui
$ rake run_agent

Once all three processes are running, go ahead and connect to http://localhost:4200 with your web
browser. See Using Stork for initial password information.

2. Using Stork

This section describes how to use features available in stork. To connect to Stork, use your
web browser and connect to port 4200. If Stork is running on your localhost, you can navigate
to http://localhost:4200.

2.1. Managing users

Upon the initial installation the default administrator’s account is created and can be used to
sign in to the system via the web UI. Please use the login admin and password admin to
sign in to the system.

To manage users, click on the Configuration menu and choose Users. You will see a list of
existing users. At the very least, there will be user admin.

To add new user, click Create User Account. A new tab will opened that will let you specify the
new account parameters. Some fields have specific restrictions. Username can consist of only
letters, numbers and underscore. E-mail field is optional. However, if specified, it must be a well
formed e-mail. First and lastname fields are mandatory. Password must only contain letters, digits,
@, ., !, +, - and must be at least 8 characters long.

Currently, the users are be associated with one of the two predefined groups (roles),
i.e. super-admin or admin, which must be selected when the user account is created. The
users belonging to the super-admin group are granted full privileges in the system, including
creation and management of user accounts. The admin group has similar privileges, except that
the users belonging to this group are not allowed to manage other users’ accounts.

Once the new user account information has been specified and all requirements are met, the
Save button will become active and you will be able to add new account.

2.2. Changing User Password

Initial password is assigned by the administrator when the user account is created.
Each user should change the password when he or she first logs in to the system.
Click on the Profile menu and choose Settings. The user profile information
is displayed. Click on Change password in the menu bar on the left. In the first
input box the current password must be specified. The new password must be specified
in the second input box and this password must meet the normal requirements for the
password as mentioned in the previous sections. Finally, the password must be confirmed
in the third input box. When all entered data is valid the Save button will be
activated. Clicking this button will attempt to change the password.

2.3. Deploying Stork Agent

Stork system uses agents to monitor services. Stork Agent (STAG or simply agent) is a
daemon that is expected to be deployed and run on each machine to be monitored. Currently,
there are no automated deployment routines and STAG has to be copied and run manually.
This can be done in a variety of ways. Here is one of them.

Assuming you want to monitor services running on machine with IP 192.0.2.1, you can do the following
on the Stork server command line:

cd <stork-dir>
scp backend/cmd/stork-agent login@192.0.2.1:/path

On the machine to be monitored, you need to start the agent. In the basic case, you can simply
run it:

./stork-agent

You can optionally pass --host= or set the STORK_AGENT_ADDRESS environment variable to
specify which address the agent will listen on. You can pass --port or set the STORK_AGENT_PORT
environment variable to specify which TCP port the agent will listen on.

Note

Unless explicitly specified, the agent will listen on all addresses on port 8080. There are no
authentication mechanisms implemented in the agent yet. Use with care!

2.4. Connecting and Monitoring Machines

2.4.1. Registering New Machine

Once the agent is deployed and running on the machine to be monitored, you should instruct Stork
server to start monitoring it. You can do so by going to Services menu and choosing Machines.
You will be presented with a list of currently registered machines.

To add a new machine, click Add New Machine. You need to specify the machine address or hostname
and a port. If Stork agent is running in a container, you should specify the container name as
a machine hostname. If you launched Stork using rake docker_up command you may specify one of
the demo container names, e.g. agent-kea, agent-bind9 etc. The demo agents are running on
port 8080. If the agent you’re connecting to was launched using rake run_agent it will
listen on localhost port 8888.

Once you click Add, the server will attempt to establish gRPC over http/2 connection to the agent.
Make sure that any firewalls in between will allow incoming connections to the TCP port specified.

Once a machine is added, a number of parameters, such as hostname, address, agent version, number
of CPU cores, CPU load, available total memory, current memory utilization, uptime, OS, platform
family, platform name, OS version, kernel, virtualization details (if any), host ID and other
information will be displayed.

If any applications, i.e. Kea or/and BIND 9 are detected on this machine, the status of those
applications will be displayed and the link will allow for navigating to the application
details.

Navigating to the discovered applications is also possible through the Services menu.

2.4.2. Monitoring Machines

To monitor registered machines, go to Services menu and click Machines. A list of currently
registered machines will be displayed. Pagination mechanism is available to display larger
number of machines.

There is a filtering mechanism that acts as an omnibox. The string typed is searched for an address,
agent version, hostname, OS, platform, OS version, kernel version, kernel architecture,
virtualization system, host-id fields. The filtering happens once you hit ENTER.

You can inspect the state of a machine by clicking its hostname. A new tab will open with machine
details. Multiple tabs can be open at the same time. You can click Refresh state to get updated
information.

The machine state can also be refreshed using Action menu. On the machines list, each machine has
its own menu. Click on the triple lines button at the right side and choose the Refresh option.

2.4.3. Deleting Machines

To stop monitoring a machine, you can go to the Machines list, find the machine you want to stop
monitoring, click on the triple lines button at the right side and choose Delete. Note this will
terminate the connection between Stork server and the agent running on the machine and the server
will no longer monitor it. However, the Stork agent process will continue running. If you want to
completely shut it down, you need to do so manually, e.g. by connecting to the machine using ssh and
stopping the agent there. One way to achieve that is to issue killall stork-agent command.

2.5. Monitoring Applications

2.5.1. Application Status

Kea and BIND 9 applications discovered on the connected machines can be listed via the top level
menu bar, under Services. You can select between Kea and BIND 9 applications. The list
of applications of the given type comprises the application version, application status and some
machine details. The Action button is also available which allows for refreshing the
information about the application.

The application status comprises a list of daemons belonging to the application. For BIND 9 it
is always only one daemon, named. In case of Kea, several daemons can be presented in the
application status column, typically: DHCPv4, DHCPv6, DDNS and CA (Kea Control Agent). The
listed daemons are those that Stork found in the CA configuration file. The warning sign
will be displayed for those daemons from the CA configuration file that are not running.
In cases when the Kea installation is simply using the default CA configuration file,
which includes configuration of daemons that are never intended to be launched, it is
recommended to remove (or comment out) those configurations to eliminate unwanted
warnings from Stork about inactive daemons.

2.5.2. IPv4 and IPv6 Subnets per Kea Application

One of the primary configuration aspects of any network is how the IP addressing is laid out. This
is represented in Kea with IPv4 and IPv6 subnets. Each subnet represents addresses being used on a
physical link. Typically, certain parts of each subnet (“pools”) are delegated to the DHCP server to
manage. Stork is able to display this information. One of the ways to inspect the subnets and pools
within is by looking at the Kea applications. This will give you an overview of what kind of
configuration this specific Kea application is serving. A list of configured subnets on that
specific Kea application will be displayed. The following picture shows a simple view of the Kea
DHCPv6 server running with a single subnet with three pools configured in it.

[image: View of Subnets assigned to a single Kea application]

2.5.3. IPv4 and IPv6 Subnets in the whole Network

It is convenient to see the complete overview of all subnets configured in the network being
monitored by Stork. To view all subnets, click on DHCP menu and choose Subnets. Note that you should
have at least one machine added with Kea application running on it. The view shows all IPv4 and IPv6
subnets with the address pools and the links to applications that are providing them. An example
view of all subnets in the network is presented in figure below.

[image: List of all subnets in the network]

There are filtering capabilities available. You can choose whether you want to see IPv4 only, IPv6
only or both. There is also omnisearch box available. You can type a string you are looking
for. Note that for strings of 4 characters and more, the filtering takes place automatically. For
shorter strings, you need to also hit Enter. For example, in the above situation you can choose to
show only the first (192.0.2.0/24) subnet by searching for 0.2 string. You can also search for
specific pools. For example, you can easily filter the subnet with specific pool if you search for
part of the pool ranges, e.g. 3.200.

Note

As of 0.4.0, Stork does not support shared networks yet. Also, if there are two or more servers
handling the same subnet (e.g. a HA pair), the same subnet will be listed multiple times. Both of
these limitations will be addressed in the future releases.

2.5.4. Kea High Availability Status

When viewing the details of the Kea application for which High Availability is enabled
(via libdhcp_ha.so hooks library), the High Availability live status is presented
and periodically refreshed for the DHCPv4 and/or DHCPv6 deamon configured as primary
or secondary/standby server. The status is not displayed for the server configured
as a HA backup. See the High Availability section in the Kea ARM [https://kea.readthedocs.io/en/latest/arm/hooks.html#ha-high-availability] for the details about various roles of the servers
within the HA setup.

The following picture shows a typical High Availability status view displayed in
Stork UI.

[image: High Availability status example]

The local server is the DHCP server (daemon) belonging to the application for which
the status is displayed. The remote server is its active HA partner. The remote
server server belongs to a different application running on a different machine
and this machine may or may not be monitored by Stork. The status of both the
local and the remote server is fetched by sending the
status-get [https://kea.readthedocs.io/en/latest/arm/hooks.html#the-status-get-command]
command to the Kea server which details are displayed (local server). The local
server periodically checks the status of its partner by sending the
ha-heartbeat command to it. Therefore this information is not always up to
date and its age depends on the heartbeat command interval (typically 10s). The
status of the remote server includes the age of the data displayed.

The status information contains the role, state and the scopes served by each
HA partner. In our case, both servers are in load-balancing state which
means that both are serving the DHCP clients and there is no failure. If the
remote server crashes, the local server should transition to the partner-down
state which will be reflected in this view. If the local server crashes, this
will manifest itself as a communication problem between Stork and the
server.

2.6. Dashboard

The Main Stork page presents a simple dashboard. It includes some statistics about the monitored
applications such as: a total number of Kea and BIND 9 applications and a number of misbehaving
applications.

3. Backend API

Stork agent provides a REST API. The API is generated using [Swagger](https://swagger.io/). The API
points are currently documented in the api/swagger.yaml file.

Note

In the future Stork releases, the API documentation will be generated automatically.

4. Developer’s Guide

Note

We acknowledge that users and developers are two different groups of people, so the documents
should eventually be separated. However, since these are still very early days of the project,
this section is kept in the Stork ARM for convenience only.

4.1. Generating Documentation

To generate documentation, simply type rake doc. You need to have Sphinx [http://www.sphinx-doc.org]
and rtd-theme [https://github.com/readthedocs/sphinx_rtd_theme] installed. The generated
documentation will be available in the doc/singlehtml directory.

4.2. Agent API

The connection between the server and the agents is established using gRPC over http/2. The agent API
definition is kept in the backend/api/agent.proto file. For debugging purposes, it is possible
to connect to the agent using grpcurl [https://github.com/fullstorydev/grpcurl] tool. For example,
you can retrieve a list of currently provided gRPC calls by using this command:

$ grpcurl -plaintext -proto backend/api/agent.proto localhost:8888 describe
agentapi.Agent is a service:
service Agent {
 rpc detectServices (.agentapi.DetectServicesReq) returns (.agentapi.DetectServicesRsp);
 rpc getState (.agentapi.GetStateReq) returns (.agentapi.GetStateRsp);
 rpc restartKea (.agentapi.RestartKeaReq) returns (.agentapi.RestartKeaRsp);
}

You can also make specific gRPC calls. For example, to get the machine state, the following command
can be used:

$ grpcurl -plaintext -proto backend/api/agent.proto localhost:8888 agentapi.Agent.getState
{
 "agentVersion": "0.1.0",
 "hostname": "copernicus",
 "cpus": "8",
 "cpusLoad": "1.68 1.46 1.28",
 "memory": "16",
 "usedMemory": "59",
 "uptime": "2",
 "os": "darwin",
 "platform": "darwin",
 "platformFamily": "Standalone Workstation",
 "platformVersion": "10.14.6",
 "kernelVersion": "18.7.0",
 "kernelArch": "x86_64",
 "hostID": "c41337a1-0ec3-3896-a954-a1f85e849d53"
}

4.3. Installing git hooks

There’s a simple git hook that inserts the issue number in the commit message automatically. If you
want to use it, go to utils directory and run git-hooks-install script. It will copy the
necessary file to .git/hooks directory.

4.4. ReST API

The primary user of ReST API is Stork UI in web browser. The definition of ReST API is located
in api folder and is described in Swagger 2.0 format.

The description in Swagger is split into multiple files. 2 files comprise a tag group:

	*-paths.yaml - defines URLs

	*-defs.yaml - contains entity definitions

All these files are combined by yamlinc tool into signle swagger file swagger.yaml.
Then from swagger.yaml there are generated code for:

	UI fronted by swagger-codegen

	backend in Go lang by go-swagger

All these steps are realized in Rakefile.

Manual Pages

	stork-server - The central Stork server

	stork-agent - Stork agent that monitors BIND 9 and Kea services

stork-server - The central Stork server

Synopsis

stork-server

Description

The stork-server provides the main Stork server capabilities. In
every stork deployment, there should be exactly one stork-server.

Arguments

Currently stork-server takes no arguments.

Mailing List and Support

There is a public mailing list available for the Stork project. stork-dev
(stork-dev at lists.isc.org) is intended for Kea developers, prospective
contributors, and other advanced users. The list is available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

Once stork will become more mature, ISC will be providing professional support
for Stork services.

History

The stork-server was first coded in November 2019 by Michal
Nowikowski and Marcin Siodelski.

See Also

stork-agent(8)

stork-agent - Stork agent that monitors BIND 9 and Kea services

Synopsis

stork-agent [–host] [–port]

Description

The stork-agent is a small tool that is being run on the systems
that are running BIND 9 and Kea services. Stork server connects to
the stork agent and uses it to monitor services remotely.

Arguments

The Stork Agent takes the following arguments:

	-h or --help

	Displays list of available parameters.

	--host=hostname

	Specifies the IP to listen on. Can be controlled with $STORK_AGENT_ADDRESS environment
variable. The default value is ::.

	--port=1234

	Specifies the TCP port to listen on for connections. The default is 8080. Can be controlled
with $STORK_AGENT_PORT environment variable.

Configuration

Stork agent uses two environment variables to control its behavior:

	STORK_AGENT_ADDRESS - if defined, governs which IP address to listen on

	STORK_AGENT_PORT - if defined, it controls which port to listen on. The
default is 8080.

Mailing List and Support

There is a public mailing list available for the Stork project. stork-dev
(stork-dev at lists.isc.org) is intended for BIND 9 and Kea developers,
prospective contributors, and other advanced users. The list is available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

Once stork will become more mature, ISC will be providing professional support
for Stork services.

History

The stork-agent was first coded in November 2019 by Michal Nowikowski.

See Also

stork-server(8)

Index

 _static/comment-bright.png

_images/stork-square-200px.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/kea-ha-status.png
High Availability

Local server
State: load-balancing
Role: primary

Scopes served: server]

Note

Remote server (4 seconds ago)

State:
Role:

load-balancing
secondary
Scopes served: (none)

The local server responds to the entire DHCP traffic.

_images/kea-subnets-list.png
DHCP Subnets

Q Filter subnets: subnet or any other field Protocol: | any v
Subnet App
D Subnet Pools D
192.0.2.1-192.0.2.50 192.0.2.51-192.0.2.100
! 192.02.0124 150 192.0.2.151-192.0.2.200 3
1 192.0.3.0/24 192.0.3.1-192.0.3.200 4
1 192.0.3.0/24 192.0.3.1-192.0.3.200 5
1 2

"

1 0f 1 pages

_images/kea-subnets6.png
Kea App 2.

Machine: agent-kea6
DHCPVE A v
subnet
overview o Subnet Pools
Version 174
Version Ext 174 1 2001:db8:1:
tarball
linked with: P p— P

logacplus 1.1.2
OpenssL 1.1.1 11 Sep 2018
database:
MysQL backend 9.1, library 5.7.29
PostgresQL backend 6.0, library 100010
Memfile backend 2.1

Hooks 10 hooks

Uptime 30 minutes 38 seconds.

Last Reloaded At 2020-02-05 11:20:45

_static/kea-ha-status.png
High Availability

Local server
State: load-balancing
Role: primary

Scopes served: server]

Note

Remote server (4 seconds ago)

State:
Role:

load-balancing
secondary
Scopes served: (none)

The local server responds to the entire DHCP traffic.

nav.xhtml

 Table of Contents

 		
 Stork Administrator Reference Manual

 		
 Stork Installation

 		
 Installation using Docker

 		
 Native Installation

 		
 Using Stork

 		
 Managing users

 		
 Changing User Password

 		
 Deploying Stork Agent

 		
 Connecting and Monitoring Machines

 		
 Registering New Machine

 		
 Monitoring Machines

 		
 Deleting Machines

 		
 Monitoring Applications

 		
 Application Status

 		
 IPv4 and IPv6 Subnets per Kea Application

 		
 IPv4 and IPv6 Subnets in the whole Network

 		
 Kea High Availability Status

 		
 Dashboard

 		
 Backend API

 		
 Developer’s Guide

 		
 Generating Documentation

 		
 Agent API

 		
 Installing git hooks

 		
 ReST API

 		
 Manual Pages

 		
 stork-server - The central Stork server

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Mailing List and Support

 		
 History

 		
 See Also

 		
 stork-agent - Stork agent that monitors BIND 9 and Kea services

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Configuration

 		
 Mailing List and Support

 		
 History

 		
 See Also

_static/minus.png

_static/plus.png

_static/kea-subnets-list.png
DHCP Subnets

Q Filter subnets: subnet or any other field Protocol: | any v
Subnet App
D Subnet Pools D
192.0.2.1-192.0.2.50 192.0.2.51-192.0.2.100
! 192.02.0124 150 192.0.2.151-192.0.2.200 3
1 192.0.3.0/24 192.0.3.1-192.0.3.200 4
1 192.0.3.0/24 192.0.3.1-192.0.3.200 5
1 2

"

1 0f 1 pages

_static/kea-subnets6.png
Kea App 2.

Machine: agent-kea6
DHCPVE A v
subnet
overview o Subnet Pools
Version 174
Version Ext 174 1 2001:db8:1:
tarball
linked with: P p— P

logacplus 1.1.2
OpenssL 1.1.1 11 Sep 2018
database:
MysQL backend 9.1, library 5.7.29
PostgresQL backend 6.0, library 100010
Memfile backend 2.1

Hooks 10 hooks

Uptime 30 minutes 38 seconds.

Last Reloaded At 2020-02-05 11:20:45

_static/stork-square-200px.png

_static/up-pressed.png

_static/stork-square-100px.png

_static/up.png

