

[image: _images/stork-square-200px.png]

Stork Administrator Reference Manual

Stork is a new project led by ISC with the aim of delivering an
ISC BIND 9 and ISC Kea DHCP use and monitoring dashboard. It is
intended to be a spiritual successor of the earlier attempts
Kittiwake and Anterius.

This is the reference guide for Stork version 0.14.0. Links to the
most up-to-date version of this document, along with other documents
for Stork, can be found on ISC’s Stork project homepage [https://gitlab.isc.org/isc-projects/stork] or at readthedocs [https://stork.readthedocs.io] .

	1. Overview
	1.1. Goals

	1.2. Architecture

	2. Installation
	2.1. Supported Systems

	2.2. Installation Prerequisites

	2.3. Database Migration Tool (optional)

	2.4. Installing from Packages
	2.4.1. Installing on Debian/Ubuntu

	2.4.2. Installing on CentOS/RHEL/Fedora

	2.4.3. Initial Setup of the Stork Server

	2.4.4. Initial Setup of the Stork Agent

	2.5. Installing from Sources
	2.5.1. Compilation Prerequisites

	2.5.2. Download Sources

	2.5.3. Building

	2.6. Integration with Prometheus and Grafana
	2.6.1. Prometheus Integration

	2.6.2. Grafana Integration

	3. Using Stork
	3.1. Managing Users

	3.2. Changing a User Password

	3.3. Configuration Settings

	3.4. Deploying Stork Agent

	3.5. Connecting and Monitoring Machines
	3.5.1. Registering a New Machine

	3.5.2. Monitoring a Machine

	3.5.3. Deleting a Machine

	3.6. Monitoring Applications
	3.6.1. Application Status

	3.6.2. IPv4 and IPv6 Subnets per Kea Application

	3.6.3. IPv4 and IPv6 Subnets in the Whole Network

	3.6.4. IPv4 and IPv6 Networks

	3.6.5. Host Reservations

	3.6.6. Sources of Host Reservations

	3.6.7. Kea High Availability Status

	3.6.8. Viewing Kea Log

	3.7. Dashboard
	3.7.1. DHCP Panel

	3.7.2. Events Panel

	3.8. Events Page

	4. Backend API

	5. Developer’s Guide
	5.1. Rakefile

	5.2. Generating Documentation

	5.3. Setting Up the Development Environment
	5.3.1. Installing Git Hooks

	5.4. Agent API

	5.5. ReST API

	5.6. Backend Unit Tests
	5.6.1. Unit Tests Database

	5.6.2. Unit Tests Coverage

	5.7. Backend Benchmarks

	5.8. WebUI Unit Tests

	5.9. System Tests
	5.9.1. Dependencies

	5.9.2. LXD Installation

	5.9.3. Running System Tests

	5.9.4. Developing System Tests

	5.10. Docker Containers for Development

	5.11. Packaging

	6. Demo
	6.1. Requirements

	6.2. Setup Steps
	6.2.1. Premium Features

	6.3. Demo Containers

	6.4. Initialization

	6.5. Stork Environment Simulator

	6.6. Prometheus

	6.7. Grafana

Appendices

	Manual Pages

Indices and tables

	Index

	Module Index

	Search Page

1. Overview

1.1. Goals

The goals of the Stork project are as follows:

	to provide monitoring and insight into ISC Kea DHCP and ISC BIND 9
operations

	to provide alerting mechanisms that indicate failures, fault
conditions, and other unwanted events in ISC Kea DHCP and
ISC BIND 9 services

	to permit easier troubleshooting of these services

1.2. Architecture

Stork is comprised of two components: Stork Server and Stork Agent.

Stork Agent is installed along with Kea DHCP or BIND 9 and
interacts directly with those services. There may be many
agents deployed in a network, one per machine.

Stork Server is installed on a stand-alone machine. It connects to
any indicated agents and indirectly (via those agents) interacts with
the Kea DHCP and BIND 9 services. It provides an integrated,
centralized front end for interacting with these services.
Only one Stork Server is deployed in a network.

[image: _images/arch.png]

2. Installation

Stork can be installed from pre-built packages or from sources. The following sections describe both methods. Unless there’s a
good reason to compile from sources, installing from native DEB or RPM packages is easier and faster.

2.1. Supported Systems

Currently Stork is being tested on the following systems:

	Ubuntu 18.04 and 20.04

	Fedora 31 and 32

	CentOS 7

	MacOS 10.15*

Note that MacOS is not and will not be officially supported. Many developers in our team use Macs, so we’re trying to keep Stork
buildable on this platform.

Stork server and agents are written in Go language. The server uses PostgreSQL database. In principle, the software could be run
on any POSIX system that has Go compiler and PostgreSQL. It is likely the software can be built on many other modern systems, but
for the time being our testing capabilities are modest. If your favourite OS is not on this list, please do try running Stork
and report your findings.

2.2. Installation Prerequisites

The Stork Agent does not require any specific dependencies to run. It can be run immediately after installation.

Stork uses the status-get command to communicate with Kea, and therefore will only work with a version of Kea that supports
status-get, which was introduced in Kea 1.7.3 and backported to 1.6.3.

Stork requires the premium Host Commands (host_cmds) hook library to be loaded by the Kea instance to retrieve host
reservations stored in an external database. Stork does work without the Host Commands hook library, but is not able to display
host reservations. Stork can retrieve host reservations stored locally in the Kea configuration without any additional hook
libraries.

Stork requires the open source Stat Commands (stat_cmds) hook library to be loaded by the Kea instance to retrieve lease
statistics. Stork does work without the Stat Commands hook library, but will not be able to show pool utilization and other
statistics.

For the Stork Server, a PostgreSQL database (https://www.postgresql.org/) version 11 or later is required. It may work with
PostgreSQL 10, but this was not tested. The general installation procedure for PostgreSQL is OS-specific and is not included
here. However, please keep in mind that Stork uses pgcrypto extensions, which are often come in a separate package. For
example, you need postgresql-crypto package on Fedora and postgresql12-contrib on RHEL and CentOS.

These instructions prepare a database for use with the Stork
Server, with the stork database user and stork password. Next,
a database called stork is created and the pgcrypto extension is
enabled in the database.

First, connect to PostgreSQL using psql and the postgres
administration user. Depending on your system configuration, this may require
switching to postgres user, using su postgres command first.

$ psql postgres
psql (11.5)
Type "help" for help.
postgres=#

Then, prepare the database:

postgres=# CREATE USER stork WITH PASSWORD 'stork';
CREATE ROLE
postgres=# CREATE DATABASE stork;
CREATE DATABASE
postgres=# GRANT ALL PRIVILEGES ON DATABASE stork TO stork;
GRANT
postgres=# \c stork
You are now connected to database "stork" as user "thomson".
stork=# create extension pgcrypto;
CREATE EXTENSION

Note

Make sure the actual password is stronger than ‘stork’ which is trivial to guess.
Using default passwords is a security risk. Stork puts no restrictions on the
characters used in the database passwords nor on their length. In particular,
it accepts passwords containing spaces, quotes, double quotes and other
special characters.

2.3. Database Migration Tool (optional)

Optional step: to initialize the database directly, the migrations
tool must be built and used to initialize and upgrade the database to the
latest schema. However, this is completely optional, as the database
migration is triggered automatically upon server startup. This is
only useful if for some reason it is desirable to set up the database
but not yet run the server. In most cases this step can be skipped.

$ rake build_migrations
$ backend/cmd/stork-db-migrate/stork-db-migrate init
$ backend/cmd/stork-db-migrate/stork-db-migrate up

The up and down command has an optional -t parameter that specifies desired
schema version. This is only useful when debugging database migrations.

$ # migrate up version 25
$ backend/cmd/stork-db-migrate/stork-db-migrate up -t 25
$ # migrate down back to version 17
$ backend/cmd/stork-db-migrate/stork-db-migrate down -t 17

Note the server requires the latest database version to run, will always
run the migration on its own and will refuse to start if migration fails
for whatever reason. The migration tool is mostly useful for debugging
problems with migration or migrating the database without actually running
the service. For complete reference, see manual page here:
stork-db-migrate - The Stork database migration tool.

To debug migrations, another useful feature is SQL tracing using the –db-trace-queries parameter.
It takes either “all” (trace all SQL operations, including migrations and run-time) or “run” (just
run-time operations, skip migrations). If specified without paraemter, “all” is assumed. With it enabled,
stork-db-migrate will print out all its SQL queries on stderr. For example, you can use these commands
to generate an SQL script that will update your schema. Note that for some migrations, the steps are
dependent on the contents of your database, so this will not be an universal Stork schema. This parameter
is also supported by the Stork server.

$ backend/cmd/stork-db-migrate/stork-db-migrate down -t 0
$ backend/cmd/stork-db-migrate/stork-db-migrate up --db-trace-queries 2> stork-schema.txt

2.4. Installing from Packages

Stork packages are stored in repositories located on the Cloudsmith
service: https://cloudsmith.io/~isc/repos/stork/packages/. Both
Debian/Ubuntu and RPM packages may be found there.

Detailed instructions for setting up the operating system to use this
repository are available under the Set Me Up button on the
Cloudsmith repository page.

2.4.1. Installing on Debian/Ubuntu

The first step for both Debian and Ubuntu is:

$ curl -1sLf 'https://dl.cloudsmith.io/public/isc/stork/cfg/setup/bash.deb.sh' | sudo bash

Next, install the package with Stork Server:

$ sudo apt install isc-stork-server

Then, install Stork Agent:

$ sudo apt install isc-stork-agent

It is possible to install both agent and server on the same machine.

2.4.2. Installing on CentOS/RHEL/Fedora

The first step for RPM-based distributions is:

$ curl -1sLf 'https://dl.cloudsmith.io/public/isc/stork/cfg/setup/bash.rpm.sh' | sudo bash

Next, install the package with Stork Server:

$ sudo dnf install isc-stork-server

Then, install Stork Agent:

$ sudo dnf install isc-stork-agent

It is possible to install both agent and server on the same machine. If dnf is not available, yum can be used in similar
fashion.

2.4.3. Initial Setup of the Stork Server

These steps are the same for both Debian-based and RPM-based
distributions that use SystemD.

After installing Stork Server from the package, the basic settings
must be configured. They are stored in /etc/stork/server.env.

These are the required settings to connect with the database:

	STORK_DATABASE_HOST - the address of a PostgreSQL database; default is localhost

	STORK_DATABASE_PORT - the port of a PostgreSQL database; default is 5432

	STORK_DATABASE_NAME - the name of a database; default is stork

	STORK_DATABASE_USER_NAME - the username for connecting to the database; default is stork

	STORK_DATABASE_PASSWORD - the password for the username connecting to the database

With those settings in place, the Stork Server service can be
enabled and started:

$ sudo systemctl enable isc-stork-server
$ sudo systemctl start isc-stork-server

To check the status:

$ sudo systemctl status isc-stork-server

By default, the Stork Server web service is exposed on port 8080,
so it can be visited in a web browser at http://localhost:8080.

It is possible to put Stork Server behind an HTTP reverse proxy
using Nginx or Apache. In the Stork Server package an example
configuration file is provided for Nginx, in
/usr/share/stork/examples/nginx-stork.conf.

2.4.4. Initial Setup of the Stork Agent

These steps are the same for both Debian-based and RPM-based
distributions that use SystemD.

After installing Stork Agent from the package, the basic settings
must be configured. They are stored in /etc/stork/agent.env.

These are the required settings to connect with the database:

	STORK_AGENT_ADDRESS - the IP address of the network interface which Stork Agent
should use for listening for Stork Server incoming connections;
default is 0.0.0.0 (i.e. listen on all interfaces)

	STORK_AGENT_PORT - the port that should be used for listening; default is 8080

With those settings in place, the Stork Agent service can be
enabled and started:

$ sudo systemctl enable isc-stork-agent
$ sudo systemctl start isc-stork-agent

To check the status:

$ sudo systemctl status isc-stork-agent

After starting, the agent periodically tries to detect installed
Kea DHCP or BIND 9 services on the system. If it finds them, they are
reported to the Stork Server when it connects to the agent.

Further configuration and usage of the Stork Server and the
Stork Agent are described in the Using Stork chapter.

2.5. Installing from Sources

2.5.1. Compilation Prerequisites

Usually it’s more convenient to install Stork using native packages. See Supported Systems and Installing from Packages for
details regarding supported systems. However, you can build the sources on your own.

The dependencies needed to be installed to build Stork sources are:

	Rake

	Java Runtime Environment (only if building natively, not using Docker)

	Docker (only if running in containers, this is needed to build the demo)

Other dependencies are installed automatically in a local directory by Rake tasks. This does not
require root priviledges. If you intend to run the demo environment, you need Docker and don’t need
Java (Docker will install Java within a container).

For details about the environment, please see the Stork wiki at
https://gitlab.isc.org/isc-projects/stork/-/wikis/Install .

2.5.2. Download Sources

The Stork sources are available on the ISC GitLab instance:
https://gitlab.isc.org/isc-projects/stork.

To get the latest sources invoke:

$ git clone https://gitlab.isc.org/isc-projects/stork

2.5.3. Building

There are several components of Stork:

	Stork Agent - this is the binary stork-agent, written in Go

	Stork Server - this is comprised of two parts:
- backend service - written in Go
- frontend - an Angular application written in Typescript

All components can be built using the following command:

$ rake build_all

The agent component is installed using this command:

$ rake install_agent

and the server component with this command:

$ rake install_server

By default, all components are installed to the root folder in the
current directory; however, this is not useful for installation in a
production environment. It can be customized via the DESTDIR
variable, e.g.:

$ sudo rake install_server DESTDIR=/usr

2.6. Integration with Prometheus and Grafana

Stork can optionally be integrated with Prometheus [https://prometheus.io/], an open source monitoring and alerting toolkit
and Grafana [https://grafana.com/], an easy-to-view analytics platform for querying, visualization and altering. Grafana
requires external data storage. Prometheus is currently the only environment supported by both Stork and Grafana. It is possible
to use Prometheus only without Grafana, but using Grafana requires Prometheus.

2.6.1. Prometheus Integration

Stork agent by default makes the
BIND 9 and Kea statistics available in a format understandable by Prometheus (works as a Prometheus exporter, in Prometheus
nomenclature). If Prometheus server is available, it can be configured to monitor Stork Agents. To enable Stork Agent
monitoring, you need to edit prometheus.yml (typically stored in /etc/prometheus/, but this may vary depending on your
installation) and add the following entries there:

statistics from Kea
- job_name: 'kea'
 static_configs:
 - targets: ['agent-kea.example.org:9547', 'agent-kea6.example.org:9547', ...]

statistics from bind9
- job_name: 'bind9'
 static_configs:
 - targets: ['agent-bind9.example.org:9119', 'another-bind9.example.org:9119', ...]

By default, Stork agent exports BIND 9 data on TCP port 9119 and Kea data on TCP port 9547. This can be configured using command
line parameters (or the Prometheus export can be disabled altogether). For details, see the stork-agent manual page.

After restarting, the Prometheus web interface can be used to inspect whether statistics are exported properly. BIND 9
statistics use bind_ prefix (e.g. bind_incoming_queries_tcp), while Kea statistics use kea_ prefix (e.g.
kea_dhcp4_addresses_assigned_total).

2.6.2. Grafana Integration

Stork provides several Grafana templates that can easily be imported. Those are available in the grafana/ directory of the
Stork source codes. Currently the available templates are bind9-resolver.json and kea-dhcp4.json. More are expected in the
future. Grafana integration requires three steps.

1. Prometheus has to be added as a data source. This can be done in several ways, including UI interface and editing Grafana
configuration files. For details, see Grafana documentation about Prometheus integration; here we simply indicate the easiest
method. Using the Grafana UI interface, select Configuration, select Data Sources, click “Add data source”, and choose
Prometheus, then specify necessary parameters to connect to your Prometheus instance. In test environments, the only really
necessary parameter is URL, but most production deployments also want authentication.

2. Import existing dashboard. In the Grafana UI click Dashboards, then Manage, then Import and select one of the templates, e.g.
kea-dhcp4.json. Make sure to select your Prometheus data source that you added in the previous step. Once imported, the
dashboard can be tweaked as needed.

3. Once Grafana is configured, go to Stork UI interface, log in as super-admin, click Settings in the Configuration menu and
then fill URLs to Grafana and Prometheus that point to your installations. Once this is done, Stork will be able to show links
for subnets leading to specific subnets. More integrations like this are expected in the future.

Alternatively, a Prometheus data source can be added by editing datasource.yaml (typically stored in /etc/grafana,
but this may vary depending on your installation) and adding entries similar to this one:

datasources:
- name: Stork-Prometheus instance
 type: prometheus
 access: proxy
 url: http://prometheus.example.org:9090
 isDefault: true
 editable: false

Also, the Grafana dashboard files can be copied to /var/lib/grafana/dashboards/ (again, this may vary depending on your
installation).

Example dashboards with some live data can be seen in the Stork screenshots gallery [https://gitlab.isc.org/isc-projects/stork/-/wikis/Screenshots#grafana] .

3. Using Stork

This section describes how to use the features available in Stork. To
connect to Stork, use a web browser and connect to port 8080. If
Stork is running on a localhost, it can be reached by navigating to
http://localhost:8080.

3.1. Managing Users

A default administrator account is created upon initial installation of Stork. It can be used to
sign in to the system via the web UI, using the username admin and password admin.

To manage users, click on the Configuration menu and choose Users to see a list of
existing users. There will be at least one user, admin.

To add a new user, click Create User Account. A new tab opens to
specify the new account parameters. Some fields have specific
restrictions:

	Username can consist of only letters, numbers, and an underscore
(_).

	The e-mail field is optional, but if specified, it must be a
well-formed e-mail.

	The firstname and lastname fields are mandatory.

	The password must only contain letters, digits, @, ., !, +, or -,
and must be at least eight characters long.

Currently, users are associated with one of the two predefined groups
(roles), i.e. super-admin or admin, which must be selected
when the user account is created. Users belonging to the
super-admin group are granted full privileges in the system,
including creation and management of user accounts. The admin
group has similar privileges, except that the users in this group are
not allowed to manage other users’ accounts.

Once the new user account information has been specified and all
requirements are met, the Save button becomes active and the new
account can be enabled.

3.2. Changing a User Password

An initial password is assigned by the administrator when a user
account is created. Each user should change the password when first
logging into the system. To change the password, click on the
Profile menu and choose Settings to display the user profile
information. Click on Change password in the menu bar on the left
and specify the current password in the first input box. The new
password must be specified and confirmed in the second and third input
boxes, and must meet the password requirements specified in the
previous section. When all entered data is valid, the Save button
is activated for changing the password.

3.3. Configuration Settings

It is possible to control some of the Stork configuration settings from
the web UI. Click on the Configuration menu and choose Settings.
There are two classes of settings available: Intervals and Grafana & Prometheus.

Intervals settings specify configuration of “pullers”. A puller is a
mechanism in Stork which triggers specific action according to the
specified interval. Each puller has its own specific action and
interval. Puller interval is specified in seconds and designates
a time period between the completion of the previously invoked action
and the beginning of the next invocation of this action.

For example, if the Kea Hosts Puller Interval is set to 10 seconds and it
takes 5 seconds to pull the hosts information, the time period between the
beginnings of the two consecutive attempts to pull the hosts information will
be equal to 15 seconds. The pull time varies between deployments and depends
on the amount of information pulled, network congestion and other factors.
The interval setting guarantees that there is a constant idle time between
any consecutive attempts.

The Grafana & Prometheus settings currently allow for specifying URLs
of the Prometheus and Grafana instances used with Stork.

3.4. Deploying Stork Agent

The Stork system uses agents to monitor services. Stork Agent is a
daemon that must be deployed and run on each machine to be
monitored. Currently, there are no automated deployment routines and
Stork Agent must be installed manually. This can be done in one
of two ways: from RPM or deb packages (described in the
Installation chapter), or by simply copying the Stork Agent
binary to the destination machine manually. The packages are usually far
more convenient.

Assuming you choose to not use the packages, the Stork Agent binary can
be copied manually. Assuming services will be monitored on a machine with the IP
192.0.2.1, enter the following on the Stork server command line:

$ cd <stork-dir>
$ scp backend/cmd/stork-agent login@192.0.2.1:/path

On the machine to be monitored, start the agent by running:

$./stork-agent

It is possible to set the --host= or STORK_AGENT_ADDRESS
environment variables to specify which address the agent listens
on. The --port or STORK_AGENT_PORT environment variables
specify which TCP port the agent listens on.

Normally, the agent will create a TCP socket on which to listen
for commmands from a stork-server and create exporters which
export data to Prometheus. There are two command line flags
which may be used to alter this behavior. The --listen-stork-only
flag instructs the agent to listen for commands from the Stork Server
but not for Prometheus requests. Conversely, the
--listen-prometheus-only flag instructs the agent to listen for
Prometheus requests but not for commands from the Stork Server.

Note

Unless explicitly specified, the agent listens on all addresses on
port 8080. There are no authentication mechanisms implemented in
the agent yet. Use with care!

3.5. Connecting and Monitoring Machines

3.5.1. Registering a New Machine

Once the agent is deployed and running on the machine to be monitored,
the Stork Server must be instructed to start monitoring it. This
can be done via the Services menu, under Machines, to
see a list of currently registered machines.

To add a new machine, click Add New Machine and specify the
machine address (IP address, hostname, or FQDN) and a port.

After the Add button is clicked, the server attempts to establish
a connection to the agent. Make sure that any active firewalls will
allow incoming connections to the TCP port specified.

Once a machine is added, a number of parameters are displayed,
including hostname, address, agent version, number of CPU cores, CPU
load, available total memory, current memory utilization, uptime, OS,
platform family, platform name, OS version, kernel, virtualization
details (if any), and host ID.

If any applications, i.e. Kea DHCP and/or BIND 9, are detected on
this machine, the status of those applications is displayed and the
link allows navigation to the application details.

Navigation to the discovered applications is also possible through the
Services menu.

3.5.2. Monitoring a Machine

Monitoring of registered machines is accomplished via the Services
menu, under Machines. A list of currently registered machines is
displayed, with multiple pages available if needed.

A filtering mechanism that acts as an omnibox is available. Via a
typed string, Stork can search for an address, agent version,
hostname, OS, platform, OS version, kernel version, kernel
architecture, virtualization system, or host-id fields.

The state of a machine can be inspected by clicking its hostname; a
new tab opens with the machine’s details. Multiple tabs can be open at
the same time, and clicking Refresh updates the available information.

The machine state can also be refreshed via the Action menu. On the
Machines list, each machine has its own menu; click on the
triple-lines button at the right side and choose the Refresh option.

3.5.3. Deleting a Machine

To stop monitoring a machine, go to the Machines list, find the
machine to stop monitoring, click on the triple-lines button at the
right side, and choose Delete. This will terminate the connection
between the Stork server and the agent running on the machine, and the
server will no longer monitor it. However, the Stork agent process
will continue running on the machine. Complete shutdown of a Stork
agent process must be done manually, e.g. by connecting to the machine
using ssh and stopping the agent there. One way to achieve that is to
issue the killall stork-agent command.

3.6. Monitoring Applications

3.6.1. Application Status

Kea DHCP and BIND 9 applications discovered on connected machines are
listed via the top-level menu bar, under Services. Both the Kea
and BIND 9 applications can be selected; the list view includes the
application version, application status, and some machine details. The
Action button is also available, to refresh the information about
the application.

The application status displays a list of daemons belonging to the
application. For BIND 9, it is always only one daemon, named. In
the case of Kea, several daemons may be presented in the application
status column, typically: DHCPv4, DHCPv6, DDNS, and CA (Kea Control
Agent).

For BIND 9, the Stork Agent is looking for the named in the
process list and parses the configuration file that is given with
-c argument. If the named process is started without a
specific configuration file, the Stork Agent will default to
/etc/bind/named.conf.

Stork uses rndc to retrieve the application status. It looks for
the controls statement in the configuration file, and uses the
first listed control point for monitoring the application.

Furthermore, the Stork Agent can be used as a Prometheus exporter.
Stork is able to do so if named is built with json-c because
it will gather statistics via the JSON statistics API. The
named.conf file must have a statistics-channel configured and
the exporter will query the first listed channel. Stork is able to export the
most metrics if zone-statistics is set to full in the
named.conf configuration.

For Kea, the listed daemons are those that Stork finds in the CA
configuration file. A warning sign is displayed for any daemons from
the CA configuration file that are not running. In cases when the Kea
installation is simply using the default CA configuration file, which
includes configuration of daemons that are never intended to be
launched, it is recommended to remove (or comment out) those
configurations to eliminate unwanted warnings from Stork about
inactive daemons.

3.6.2. IPv4 and IPv6 Subnets per Kea Application

One of the primary configuration aspects of any network is the layout
of IP addressing. This is represented in Kea with IPv4 and IPv6
subnets. Each subnet represents addresses used on a physical
link. Typically, certain parts of each subnet (“pools”) are delegated
to the DHCP server to manage. Stork is able to display this
information.

One way to inspect the subnets and pools within Kea is by looking at
each Kea application to get an overview of what configurations a
specific Kea application is serving. A list of configured subnets on
that specific Kea application is displayed. The following picture
shows a simple view of the Kea DHCPv6 server running with a single
subnet, with three pools configured in it.

[image: View of subnets assigned to a single Kea application]

3.6.3. IPv4 and IPv6 Subnets in the Whole Network

It is convenient to see the complete overview of all subnets
configured in the network being monitored by Stork. Once at least one
machine with the Kea application running is added to Stork, click on
the DHCP menu and choose Subnets to see all available subnets. The
view shows all IPv4 and IPv6 subnets with the address pools and links
to the applications that are providing them. An example view of all
subnets in the network is presented in the figure below.

[image: List of all subnets in the network]

There are filtering capabilities available in Stork; it is possible to
choose whether to see IPv4 only, IPv6 only, or both. There is also an
omnisearch box available where users can type a search string. Note
that for strings of four characters or more, the filtering takes place
automatically, while shorter strings require the user to hit
Enter. For example, in the above situation it is possible to show only
the first (192.0.2.0/24) subnet by searching for the 0.2 string. One
can also search for specific pools, and easily filter the subnet with
a specific pool, by searching for part of the pool ranges,
e.g. 3.200.

Stork is able to display pool utilization for each subnet, and
displays the absolute number of addresses allocated and percentage of
usage. There are two thresholds: 80% (warning; the pool utilization
bar becomes orange) and 90% (critical; the pool utilization bar
becomes red).

Note

As of Stork 0.5.0, if two or more servers are handling the same
subnet (e.g. a HA pair), the same subnet is listed multiple
times. This limitation will be addressed in future releases.

3.6.4. IPv4 and IPv6 Networks

Kea uses the concept of a shared network, which is essentially a stack
of subnets deployed on the same physical link. Stork is able to
retrieve information about shared networks and aggregate it across all
configured Kea servers. The Shared Networks view allows for the
inspection of networks and the subnets that belong in them. Pool
utilization is shown for each subnet.

3.6.5. Host Reservations

Kea DHCP servers can be configured to assign static resources or parameters to the
DHCP clients communicating with the servers. Most commonly these resources are the
IP addresses or delegated prefixes. However, Kea also allows for assigning hostnames,
PXE boot parameters, client classes, DHCP options, and others. The mechanism by which
a given set of resources and/or parameters is associated with a given DHCP client
is called “host reservations.”

A host reservation consists of one or more DHCP identifers used to associate the
reservation with a client, e.g. MAC address, DUID, or client identifier;
and a collection of resources and/or parameters to be returned to the
client if the client’s DHCP message is associated with the host reservation by one
of the identifiers. Stork can detect existing host reservations specified both in
the configuration files of the monitored Kea servers and in the host database
backends accessed via the Kea host_cmds premium hooks library. At present, Stork
provides no means to update or delete host reservations.

All reservations detected by Stork can be listed by selecting the DHCP
menu option and then selecting Hosts.

The first column in the presented view displays one or more DHCP identifiers
for each host in the format hw-address=0a:1b:bd:43:5f:99, where
hw-address is the identifier type. In this case, the identifier type is
the MAC address of the DHCP client for which the reservation has been specified.
Supported identifier types are described in the following sections of the Kea ARM:
Host Reservation in DHCPv4 [https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#host-reservation-in-dhcpv4]
and Host Reservation in DHCPv6 [https://kea.readthedocs.io/en/latest/arm/dhcp6-srv.html#host-reservation-in-dhcpv6].
If multiple identifiers are present for a reservation, the reservation will
be assigned when at least one of the identifiers matches the received DHCP packet.

The second column, IP Reservations, includes the static assignments of the
IP addresses and/or delegated prefixes to the clients. There may be one or
more IP reservations for each host.

The Hostname column contains an optional hostname reservation, i.e. the
hostname assigned to the particular client by the DHCP servers via the
Hostname or Client FQDN option.

The Global/Subnet column contains the prefixes of the subnets to which the reserved
IP addresses and prefixes belong. If the reservation is global, i.e. is valid
for all configured subnets of the given server, the word “global” is shown
instead of the subnet prefix.

Finally, the AppID @ Machine column includes one or more links to
Kea applications configured to assign each reservation to the
client. The number of applications will typically be greater than one
when Kea servers operate in the High Availability setup. In this case,
each of the HA peers uses the same configuration and may allocate IP
addresses and delegated prefixes to the same set of clients, including
static assignments via host reservations. If HA peers are configured
correctly, the reservations they share will have two links in AppID
@ Machine column. Next to each link there is a little label indicating
whether the host reservation for the given server has been specified
in its configuration file or a host database (via host_cmds premium
hooks library).

The Filter hosts input box is located above the Hosts table. It
allows for filtering the hosts by identifier types, identifier values, IP
reservations, hostnames and by globality i.e. is:global and not:global.
When filtering by DHCP identifier values, it is not necessary to use
colons between the pairs of hexadecimal digits. For example, the
reservation hw-address=0a:1b:bd:43:5f:99 will be found regardless
of whether the filtering text is 1b:bd:43 or 1bbd43.

3.6.6. Sources of Host Reservations

There are two ways to configure the Kea servers to use host reservations. First,
the host reservations can be specified within the Kea configuration files; see
Host Reservation in DHCPv4 [https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#host-reservation-in-dhcpv4]
for details. The other way is to use a host database backend, as described in
Storing Host Reservations in MySQL, PostgreSQL, or Cassandra [https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#storing-host-reservations-in-mysql-postgresql-or-cassandra].
The second solution requires the given Kea server to be configured to use the
host_cmds premium hooks library. This library implements control commands used
to store and fetch the host reservations from the host database which the Kea
server is connected to. If the host_cmds hooks library is not loaded, Stork
will only present the reservations specified within the Kea configuration files.

Stork periodically fetches the reservations from the host database backends
and updates them in the local database. The default interval at which Stork
refreshes host reservation information is set to 60 seconds. This means that
an update in the host reservation database will not be visible in Stork until
up to 60 seconds after it was applied. This interval is currently not configurable.

Note

As of the Stork 0.7.0 release, the list of host reservations must be manually
refreshed by reloading the browser page to observe the most recent updates
fetched from the Kea servers.

3.6.7. Kea High Availability Status

When viewing the details of the Kea application for which High
Availability is enabled (via the libdhcp_ha.so hooks library), the
High Availability live status is presented and periodically refreshed
for the DHCPv4 and/or DHCPv6 daemon configured as primary or
secondary/standby server. The status is not displayed for the server
configured as an HA backup. See the High Availability section in the
Kea ARM [https://kea.readthedocs.io/en/latest/arm/hooks.html#ha-high-availability]
for details about the roles of the servers within the HA setup.

The following picture shows a typical High Availability status view
displayed in the Stork UI.

[image: High Availability status example]

The local server is the DHCP server (daemon) belonging to the
application for which the status is displayed; the remote server is
its active HA partner. The remote server belongs to a different
application running on a different machine, and this machine may or
may not be monitored by Stork. The statuses of both the local and the
remote server are fetched by sending the status-get [https://kea.readthedocs.io/en/latest/arm/hooks.html#the-status-get-command]
command to the Kea server whose details are displayed (the local
server). In the load-balancing and hot-standby modes the local server
periodically checks the status of its partner by sending the
ha-heartbeat command to it. Therefore, this information is not
always up-to-date; its age depends on the heartbeat command interval
(typically 10 seconds). The status of the remote server includes the
age of the data displayed.

The status information contains the role, state, and scopes served by
each HA partner. In the usual HA case, both servers are in
load-balancing state, which means that both are serving DHCP
clients and there is no failure. If the remote server crashes, the
local server transitions to the partner-down state, which will be
reflected in this view. If the local server crashes, this will
manifest itself as a communication problem between Stork and the
server.

As of Stork 0.8.0 release, the High Availability view may also
contain the information about the heartbeat status between the two
servers and the information about the failover progress. This information
is only available while monitoring Kea 1.7.8 versions and later.

The failover progress information is only presented when one of the
active servers has been unable to communicate with the partner via
the heartbeat exchange for a time exceeding the max-heartbeat-delay
threshold. If the server is configured to monitor the DHCP traffic
directed to the partner to verify that the partner is not responding
to this traffic before transitioning to the partner-down state, the
information about the number of unacked clients (clients which failed
to get the lease), connecting clients (all clients currently trying
to get the lease from the partner) and the number of analyzed
packets are displayed. The system administrator may use this information
to diagnose why the failover transition has not taken place or when
such transition is likely to happen.

More about High Availability status information provided by Kea can
be found in the Kea ARM [https://kea.readthedocs.io/en/latest/arm/hooks.html#the-status-get-command].

3.6.8. Viewing Kea Log

Stork offers a simple logs viewing mechanism to diagnose issues with
monitored applications.

Note

As of Kea 0.10 release, this mechanism only supports viewing Kea log
files. Viewing BIND9 logs is not supported yet. Monitoring other
logging locations such as: stdout, stderr or syslog is also not
supported.

Kea can be configured to log into multiple destinations. Different types
of log messages may be output into different log files, syslog, stdout
or stderr. The list of log destinations used by the Kea application
is available on the Kea app page. Click on the Kea app whose logs you
want to view. Next, select the Kea daemon by clicking on one of the
tabs, e.g. DHCPv4 tab. Scroll down to the Loggers section.

This section contains a table with a list of configured loggers for
the selected daemon. For each configured logger the logger’s name,
logging severity and output location are presented. The possible output
locations are: log file, stdout, stderr or syslog. It is only possible to view
the logs output to the log files. Therefore, for each log file there is a
link which leads to the log viewer showing the selected file’s contents.
The loggers which output to the stdout, stderr and syslog are also listed
but the links to the log viewer are not available for them.

Clicking on the selected log file navigates to the log viewer for this file.
By default, the viewer displays the tail of the log file up to 4000 characters.
Depending on the network latency and the size of the log file, it may take
several seconds or more before the log contents are fetched and displayed.

The log viewer title bar comprises three buttons. The button with the refresh
icon triggers log data fetch without modifying the size of the presented
data. Clicking on the + button extends the size of the viewed log tail
by 4000 characters and refreshes the data in the log viewer. Conversely,
clicking on the - button reduces the amount of presented data by
4000 characters. Every time any of these buttons is clicked, the viewer
discards currently presented data and displays the latest part of the
log file tail.

Please keep in mind that extending the size of the viewed log tail may
cause slowness of the log viewer and network congestion as you increase
the amount of data fetched from the monitored machine.

3.7. Dashboard

The Main Stork page presents a dashboard. It contains a panel with
information about DHCP and a panel with events observed or noticed by
Stork server.

3.7.1. DHCP Panel

DHCP panel includes two sections: one for DHCPv4 and one for DHCPv6.
Each section contains 3 kinds of information:

	list of up to 5 subnets with the highest pool utilization

	list of up to 5 shared networks with the highest pool utilization

	statistics about DHCP

3.7.2. Events Panel

Events panel presents the list of the most recent events captured by
the Stork server. There are 3 urgency levels of the events: info, warning
and error. Events pertaining to the particular entities, e.g. machines
or applications, provide a link to a web page containing the information
about the given object.

3.8. Events Page

Events page presents a list of all events. It allows for filtering events
by:

	urgency level,

	machine,

	application type (Kea, BIND 9)

	daemon type (DHCPv4, DHCPv6, named, etc)

	user who caused given event (this is available to super-admin group only)

4. Backend API

Stork Agent provides a REST API. The API is generated using Swagger [https://swagger.io/]. Source YAML files are stored in
the api/ directory in the source files. To view the REST API documentation, open the Stork interface, click Help and choose
Stork API Docs (SwaggerUI) or Stork API Docs (Redoc).

5. Developer’s Guide

Note

We acknowledge that users and developers have different needs, so
the user and developer documents should eventually be
separated. However, since the project is still in its early stages,
this section is kept in the Stork ARM for convenience.

5.1. Rakefile

Rakefile is a script for performing many development tasks like
building source code, running linters, running unit tests, and running
Stork services directly or in Docker containers.

There are several other Rake targets. For a complete list of available
tasks, use rake -T. Also see the Stork wiki [https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment#building-testing-and-running-stork]
for detailed instructions.

5.2. Generating Documentation

To generate documentation, simply type rake doc.
Sphinx [http://www.sphinx-doc.org] and rtd-theme [https://github.com/readthedocs/sphinx_rtd_theme] must be installed. The
generated documentation will be available in the doc/singlehtml
directory.

5.3. Setting Up the Development Environment

The following steps install Stork and its dependencies natively,
i.e. on the host machine, rather than using Docker images.

First, PostgreSQL must be installed. This is OS-specific, so please
follow the instructions from the Installation chapter.

Once the database environment is set up, the next step is to build all
the tools. Note the first command below downloads some missing dependencies
and installs them in a local directory. This is done only once
and is not needed for future rebuilds, although it is safe to rerun
the command.

$ rake build_backend
$ rake build_ui

The environment should be ready to run! Open three consoles and run
the following three commands, one in each console:

$ rake run_server

$ rake serve_ui

$ rake run_agent

Once all three processes are running, connect to http://localhost:8080
via a web browser. See Using Stork for initial password information
or for adding new machines to the server.

The run_agent runs the agent directly on the current operating
system, natively; the exposed port of the agent is 8888.

There are other Rake tasks for running preconfigured agents in Docker
containers. They are exposed to the host on specific ports.

When these agents are added as machines in the Stork Server UI,
both a localhost address and a port specific to a given container must
be specified. This is a list of containers can be found in
Docker Containers for Development section.

5.3.1. Installing Git Hooks

There is a simple git hook that inserts the issue number in the commit
message automatically; to use it, go to the utils directory and
run the git-hooks-install script. It will copy the necessary file
to the .git/hooks directory.

5.4. Agent API

The connection between the server and the agents is established using
gRPC over http/2. The agent API definition is kept in the
backend/api/agent.proto file. For debugging purposes, it is
possible to connect to the agent using the grpcurl [https://github.com/fullstorydev/grpcurl] tool. For example, a list
of currently provided gRPC calls may be retrieved with this command:

$ grpcurl -plaintext -proto backend/api/agent.proto localhost:8888 describe
agentapi.Agent is a service:
service Agent {
 rpc detectServices (.agentapi.DetectServicesReq) returns (.agentapi.DetectServicesRsp);
 rpc getState (.agentapi.GetStateReq) returns (.agentapi.GetStateRsp);
 rpc restartKea (.agentapi.RestartKeaReq) returns (.agentapi.RestartKeaRsp);
}

Specific gRPC calls can also be made. For example, to get the machine
state, the following command can be used:

$ grpcurl -plaintext -proto backend/api/agent.proto localhost:8888 agentapi.Agent.getState
{
 "agentVersion": "0.1.0",
 "hostname": "copernicus",
 "cpus": "8",
 "cpusLoad": "1.68 1.46 1.28",
 "memory": "16",
 "usedMemory": "59",
 "uptime": "2",
 "os": "darwin",
 "platform": "darwin",
 "platformFamily": "Standalone Workstation",
 "platformVersion": "10.14.6",
 "kernelVersion": "18.7.0",
 "kernelArch": "x86_64",
 "hostID": "c41337a1-0ec3-3896-a954-a1f85e849d53"
}

5.5. ReST API

The primary user of the ReST API is the Stork UI in a web browser. The
definition of the ReST API is located in the api folder and is
described in Swagger 2.0 format.

The description in Swagger is split into multiple files. Two files
comprise a tag group:

	*-paths.yaml - defines URLs

	*-defs.yaml - contains entity definitions

All these files are combined by the yamlinc tool into a single
Swagger file swagger.yaml. Then, swagger.yaml generates code
for:

	the UI fronted by swagger-codegen

	the backend in Go lang by go-swagger

All these steps are accomplished by Rakefile.

5.6. Backend Unit Tests

There are unit tests for backend part (agent and server) written in Go.
They can be run using Rake:

$ rake unittest_backend

This requires preparing a database in PostgreSQL. One way to avoid
doing this manually is by using a docker container with PostgreSQL
which is automatically created when running the following Rake task:

$ rake unittest_backend_db

This one task spawns a container with PostgreSQL in the background and
then it runs unit tests. When the tests are completed the database is
shutdown and removed.

5.6.1. Unit Tests Database

When docker container with a database is not used for unit tests, the
PostgreSQL server must be stared and the following role must be
created:

postgres=# CREATE USER storktest WITH PASSWORD 'storktest';
CREATE ROLE
postgres=# ALTER ROLE storktest SUPERUSER;
ALTER ROLE

To point unit tests to our specific database set POSTGRES_ADDR
environment variable, e.g.:

$ rake unittest_backend POSTGRES_ADDR=host:port

By default it points to localhost:5432.

Similarly, if the db setup requires a password other than the default
storktest, it’s convenient to set up PGPASSWORD variable accordingly. This
can be done the following way:

$ rake unittest_backend PGPASSWORD=secret123

Note there’s no need to create the storktest database itself. It is created
and destroyed by the Rakefile task.

5.6.2. Unit Tests Coverage

At the end of tests execution there is coverage report presented. If
coverage of any module is below a threshold of 35% then an error is
raised.

5.7. Backend Benchmarks

Benchmarks are part of the backend unit tests. They are implemented using the
golang “testing” library and they test performance sensitive parts of the
backend. Unlike unit tests, the benchmarks do not return pass/fail status.
They measure average execution time of functions and print the results to
the console.

In order to run unit tests with benchmarks the benchmark environment
variable must be specified as follows:

$ rake unittest_backend benchmark=true

This command will run all unit tests and all benchmarks. Running benchmarks
without unit tests is possible using the combination of benchmark and
test environment variables:

$ rake unittest_backend benchmark=true test=Bench

Benchmarks are useful to test performance of complex functions and find
bottlenecks. When working on improving performance of a function, examining a
benchmark result before and after the changes is a good practice to ensure
that the goals of the changes are achieved.

Similarly, adding a new logic to a function will often cause performance
degradation and careful examination of the benchmark result drop for that
function may be a driver for improving efficiency of the new code.

5.8. WebUI Unit Tests

We do have the WebUI tests. We take advantage of the unit-tests generated automatically
by Angular. The simplest way to run these tests is by using rake tasks:

rake build_ui
rake ng_test

The tests require Chromium (on Linux) or Chrome (on Mac) browser. The rake ng_test
task will attempt to locate the browser binary and launch it automatically. If the
browser binary is not found in the default locations the rake task will return an
error. It is possible to set the location manually by setting the CHROME_BIN
environment variable. For example:

export CHROME_BIN=/usr/local/bin/chromium-browser
rake ng_test

By default, the tests launch the browser in the headless mode in which test results
and any possible errors are printed in the console. Though, in some situations it
is useful to run the browser in non headless mode because it provides debugging features
in Chrome’s graphical interface. It also allows for selectively running the tests.
Run the tests in non headless mode using the debug variable appended to the rake
command:

rake ng_test debug=true

The tests are being run in random order by default which makes it sometimes difficult
to chase the individual errors. One convenient way to run them is to click Debug, click
Options and unset the “run tests in random order”. This will run the tests always in
the same order.

You can run specific test by clicking on its name. For example, you can run one specific
test by opening this link http://localhost:9876/debug.html?spec=ProfilePageComponent

When adding new component or service with ng generate component|service …, the Angular framework
will add .spec.ts file for you with a boilerplate code there. In most cases, the first step in
running those tests is to add necessary Stork imports. If in doubt, take a look at commits on
https://gitlab.isc.org/isc-projects/stork/-/merge_requests/97. There are many examples how to fix
failing tests.

5.9. System Tests

System tests for Stork are designed to test Stork in distributted environment.
They allow for testing several Stork servers and agents running at the same time
in one test case. They are run inside LXD containers. It is possible to set up
Kea or BIND 9 services along Stork agents. The framework enables tinkering
in containers so custom Kea configs can be deployed or specific Kea daemons
can be stopped.

The tests can use:

	Stork server ReST API directly or

	Stork web UI via Selenium.

5.9.1. Dependencies

System tests require:

	Linux operating system (prefered Ubuntu or Fedora)

	Python 3

	LXD containers (https://linuxcontainers.org/lxd/introduction)

5.9.2. LXD Installation

The easiest way to install LXD is to use snap. So first let’s install snap.

On Fedora:

$ sudo dnf install snapd

On Ubuntu:

$ sudo apt install snapd

Then install LXD:

$ sudo snap install lxd

And then add your user to lxd group:

$ sudo usermod -a -G lxd $USER

Now you need to relogin to make your presence in lxd group visible in the shell session.

After installing LXD it requires initialization. Run:

$ lxd init

and then for each question press Enter i.e. use default values:

Would you like to use LXD clustering? (yes/no) [default=no]: **Enter**
Do you want to configure a new storage pool? (yes/no) [default=yes]: **Enter**
Name of the new storage pool [default=default]: **Enter**
Name of the storage backend to use (dir, btrfs) [default=btrfs]: **Enter**
Would you like to create a new btrfs subvolume under /var/snap/lxd/common/lxd? (yes/no) [default=yes]: **Enter**
Would you like to connect to a MAAS server? (yes/no) [default=no]: **Enter**
Would you like to create a new local network bridge? (yes/no) [default=yes]: **Enter**
What should the new bridge be called? [default=lxdbr0]: **Enter**
What IPv4 address should be used? (CIDR subnet notation, "auto" or "none") [default=auto]: **Enter**
What IPv6 address should be used? (CIDR subnet notation, "auto" or "none") [default=auto]: **Enter**
Would you like LXD to be available over the network? (yes/no) [default=no]: **Enter**
Would you like stale cached images to be updated automatically? (yes/no) [default=yes] **Enter**
Would you like a YAML "lxd init" preseed to be printed? (yes/no) [default=no]: **Enter**

More details can be found on: https://linuxcontainers.org/lxd/getting-started-cli/

One of the questions was about a subvolume. It is stored in /var/snap/lxd/common/lxd.
This subvolume is used to store images and containers. If the space is exhausted then
it is not possible to create new containers. This is not connected with you total disk
space but the space in this subvolume. To free space you may remove some stale images
or stopped containers. Basic usage of LXD is presented on:
https://linuxcontainers.org/lxd/getting-started-cli/#lxd-client

5.9.3. Running System Tests

After preparing all dependencies now it is possible to start tests.
But first RPM and deb Stork packages need to be prepared. This can
be done with this Rake task:

$ rake build_pkgs_in_docker

When we have packages then the tests can be invoked by the following Rake task:

$ rake system_tests

This command beside running the tests first prepares Python virtual environment (venv)
where pytest and other Python dependencies are installed. pytest is a Python testing
framework that is used in Stork system tests.

At the bottom of logs there are listed test cases with their result status.

The tests can be invoked directly using pytest but first we need to change directory
to tests/system:

$ cd tests/system
$./venv/bin/pytest --tb=long -l -r ap -s tests.py

The switches passed to pytest are:

	--tb=long in case of failures present long format of traceback

	-l show values of local variables in tracebacks

	-r ap at the end of execution print report that includes (p)assed and (a)ll except passed (p)

To run particular test case add it just after test.py:

$./venv/bin/pytest --tb=long -l -r ap -s tests.py::test_users_management[centos/7-ubuntu/18.04]

To get a list of tests without actually running them, the following command can be used:

$./venv/bin/pytest --collect-only tests.py

The test names of available tests will be printed as <Function name_of_the_test>.

A single test case can be run using a rake task with the test variable set to the test name:

$ rake system_tests test=tests.py::test_users_management[centos/7-ubuntu/18.04]

5.9.4. Developing System Tests

System tests are defined in tests.py and other files that start from test_.
There are two other files that are defining framework for Stork system tests:

	conftest.py - it defines hooks for pytests

	containers.py - it handles LXD containers: starting/stopping, communication like
invoking commands, uploading/downloading files, installing and preparing Stork
Agent and Server, and Kea, and other dependencies that they requires.

Most of tests are constructed as follow:

@pytest.mark.parametrize("agent, server", SUPPORTED_DISTROS)
def test_machines(agent, server):
 # login to stork server
 r = server.api_post('/sessions',
 json=dict(useremail='admin', userpassword='admin'),
 expected_status=200)
 assert r.json()['login'] == 'admin'

 # add machine
 machine = dict(
 address=agent.mgmt_ip,
 agentPort=8080)
 r = server.api_post('/machines', json=machine, expected_status=200)
 assert r.json()['address'] == agent.mgmt_ip

 # wait for application discovery by Stork Agent
 for i in range(20):
 r = server.api_get('/machines')
 data = r.json()
 if len(data['items']) == 1 and \
 len(data['items'][0]['apps'][0]['details']['daemons']) > 1:
 break
 time.sleep(2)

 # check discovered application by Stork Agent
 m = data['items'][0]
 assert m['apps'][0]['version'] == '1.7.3'

Let’s dissect this code and explain each part.

@pytest.mark.parametrize("agent, server", SUPPORTED_DISTROS)

This indicates that we are parametrizing the test and there will be one or more
instances of this test in execution for each set of parameters.

The constant SUPPORTED_DISTROS defines two sets of operating systems
for testing:

SUPPORTED_DISTROS = [
 ('ubuntu/18.04', 'centos/7'),
 ('centos/7', 'ubuntu/18.04')
]

The first set indicates that for Stork agent a Ubuntu 18.04 should be used
in LXD container and for Stork server Centos 7. The second sets is the opposite
of the first one.

The next line:

def test_machines(agent, server):

defines the test function. Normally agent and server argument would get text values
'ubuntu/18.04' and 'centos/7' but there is prepared a hook in conftest.py,
in pytest_pyfunc_call() function that intercepts these arguments and based
on them it spins up LXD containers with indicated operating systems. This hook
also at the end of the test collects Stork logs from these containers and stores
them in test-results folder for later user analysis if needed.

So instead text values the hook replaces the arguments with references
to actual LXC container objects. Then the test may interact directly with them.
Beside substituting agent and server arguments the hook intercepts
any argument that starts with agent and server. This way we may have
several agents in the test, e.g. agent1 or agent_kea, agent_bind9.

Then we are logging into the Stork server using its ReST API:

login to stork server
r = server.api_post('/sessions',
 json=dict(useremail='admin', userpassword='admin'),
 expected_status=200)
assert r.json()['login'] == 'admin'

And then we are adding a machine with Stork agent to Stork server:

add machine
machine = dict(
 address=agent.mgmt_ip,
 agentPort=8080)
r = server.api_post('/machines', json=machine, expected_status=200)
assert r.json()['address'] == agent.mgmt_ip

Here we have a check that verifies returned address of the machine.

Then we need to wait until Stork agent detects Kea application and reports it
to Stork server. We are pulling periodically the server if it received
information about Kea app.

wait for application discovery by Stork Agent
for i in range(20):
 r = server.api_get('/machines')
 data = r.json()
 if len(data['items']) == 1 and \
 len(data['items'][0]['apps'][0]['details']['daemons']) > 1:
 break
 time.sleep(2)

At the end we are verifying returned data about Kea application:

check discovered application by Stork Agent
m = data['items'][0]
assert m['apps'][0]['version'] == '1.7.3'

5.10. Docker Containers for Development

To ease developemnt, there are several Docker containers available.
These containers and several more are used in Stork Demo that is
described in Demo chapter. The full description of each
container can found in that chapter.

The following Rake tasks are starting these containers.

Rake tasks for managing development containers.

	Rake task

	Description

	rake build_kea_container

	Build a container agent-kea with Stork Agent
and Kea with DHCPv4.

	rake run_kea_container

	Start agent-kea container. Published port is 8888.

	rake build_kea6_container

	Build a agent-kea6 container with Stork Agent
and Kea with DHCPv6.

	rake run_kea6_container

	Start agent-kea6 container. Published port is 8886.

	rake build_kea_ha_containers

	Build two containers, agent-kea-ha1 and agent-kea-ha2,
with Stork Agent and Kea with DHCPv4 that are configured
to work together in High Availability mode.

	rake run_kea_ha_containers

	Start agent-kea-ha1 and agent-kea-ha2 containers.
Published ports are 8881 and 8882.

	rake build_kea_hosts_container

	Build a agent-kea-hosts container with Stork Agent
and Kea with DHCPv4 with host reservations stored in
a database. It requires premium features.

	rake run_kea_hosts_container

	Start agent-kea-hosts container. It requires premium
features.

	rake build_bind9_container

	Build a agent-bind9 container with Stork Agent
and BIND 9.

	rake run_bind9_container

	Start agent-bind9 container. Published port is 9999.

5.11. Packaging

There are scripts for packaging the binary form of Stork. There are
two supported formats:

	RPM

	deb

The RPM package is built on the latest CentOS version. The deb package
is built on the latest Ubuntu LTS.

There are two packages built for each system: a server and an agent.

There are Rake tasks that perform the entire build procedure in a
Docker container: build_rpms_in_docker and
build_debs_in_docker. It is also possible to build packages directly
in the current operating system; this is provided by the deb_agent,
rpm_agent, deb_server, and rpm_server Rake tasks.

Internally, these packages are built by FPM
(https://fpm.readthedocs.io/). The containers that are used to build
packages are prebuilt with all dependencies required, using the
build_fpm_containers Rake task. The definitions
of these containers are placed in docker/pkgs/centos-8.txt and
docker/pkgs/ubuntu-18-04.txt.

6. Demo

A demo installation of Stork can be used to demonstrate Stork
capabilities but can be used for its development as well.

The demo installation uses Docker and Docker Compose to set up all
Stork services. It contains:

	Stork Server

	Stork Agent with Kea DHCPv4

	Stork Agent with Kea DHCPv6

	Stork Agent with Kea HA-1 (high availability server 1)

	Stork Agent with Kea HA-2 (high availability server 2)

	Stork Agent with BIND 9

	Stork Environment Simulator

	PostgreSQL database

	Prometheus & Grafana

These services allow observation of many Stork features.

6.1. Requirements

Running the Stork Demo requires the same dependencies as building
Stork, which is described in the Installing from Sources chapter.

Besides the standard dependencies, the Stork Demo requires:

	Docker

	Docker Compose

For details, please see the Stork wiki
https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment.

6.2. Setup Steps

The following command retrieves all required software (go, goswagger,
nodejs, Angular dependencies, etc.) to the local directory. No root
password is necessary. Then it prepares Docker images and starts them
up.

$ rake docker_up

Once the build process finishes, the Stork UI is available at
http://localhost:8080/. Use any browser to connect.

6.2.1. Premium Features

It is possible to run the demo with premium features enabled in Kea
apps. It requires starting the demo with an access token to the Kea premium
repositories. Access tokens can be found on
https://cloudsmith.io/~isc/repos/kea-1-7-prv/setup/#formats-deb. The
token can be found inside this URL on that page:
https://dl.cloudsmith.io/<access token>/isc/kea-1-7-prv/cfg/setup/bash.deb.sh.
This web page and the token are available only to ISC employees and paid customers of ISC.

$ rake docker_up cs_repo_access_token=<access token>

6.3. Demo Containers

The setup procedure creates several Docker containers. Their definition
is stored in docker-compose.yaml file in Stork source code repository.

These containers have Stork production services and components:

	server

	This container is essential. It runs the Stork server,
which interacts with all the agents and the database and exposes the
API. Without it, Stork will not be able to function.

	webui

	This container is essential in most circumstances. It
provides the front-end web interface. It is potentially unnecessary with
the custom development of a Stork API client.

	agent-bind9

	This container runs a BIND 9 server. With this container, the agent
can be added as a machine and Stork will begin monitoring its BIND
9 service.

	agent-bind9-2

	This container also runs a BIND 9 server, for the purpose of
experimenting with two different DNS servers.

	agent-kea

	This container runs a Kea DHCPv4 server. With this container, the
agent can be added as a machine and Stork will begin monitoring its
Kea DHCPv4 service.

	agent-kea6

	An agent with a Kea DHCPv6 server.

	agent-kea-ha1 and agent-kea-ha2

	These two containers should, in general, be run together. They each
have a Kea DHCPv4 server instance configured in a HA pair. With
both running and registered as machines in Stork, users can observe
certain HA mechanisms, such as one taking over the traffic if the
partner becomes unavailable.

	agent-kea-many-subnets

	An agent ith a Kew DHCPv4 server that has many subnets defined in
its config (about 7000)

These are containers with 3rd party services that are required by Stork:

	postgres

	This container is essential. It runs the PostgreSQL database that
is used by the Stork server. Without it, the Stork server will
produce error messages about an unavailable database.

	prometheus

	Prometheus, a monitoring solution (https://prometheus.io/). This
container is used for monitoring applications. It is preconfigured
to monitor Kea and BIND 9 containers.

	grafana

	This is a container with Grafana (https://grafana.com/), a
dashboard for Prometheus. It is preconfigured to pull data from a
Prometheus container and show Stork dashboards.

These are supporting containers:

	simulator

	Stork Environment Simulator, a web application that can run DHCP
traffic using perfdhcp (useful to observe non-zero statistics
coming from Kea), run DNS traffic using dig and flamethrower
(useful to observe non-zero statistics coming from BIND 9), and
start and stop any service in any other container (useful to
simulate e.g. crash of Kea by stopping it).

Note

The containers running the Kea and BIND 9 applications are for demo
purposes only. They allow users to quickly start experimenting with
Stork without having to manually deploy Kea and/or BIND 9
instances.

The PostgreSQL database schema is automatically migrated to the latest
version required by the Stork server process.

The setup procedure assumes those images are fully under Stork
control. If there are existing images, they will be overwritten.

6.4. Initialization

Stork Server requires some initial information:

	Go to http://localhost:8080/machines/all

	Add new machines (leave the default port):

	agent-kea

	agent-kea6

	agent-kea-ha1

	agent-kea-ha2

	agent-bind9

	agent-bind9-2

6.5. Stork Environment Simulator

Stork Environment Simulator allows:

	sending DHCP traffic to Kea applications

	sending DNS requests to BIND 9 applications

	stopping and starting Stork Agents, Kea and BIND 9 daemons

Stork Environment Simulator allows DHCP traffic to be sent to selected
subnets pre-configured in Kea instances, with a limitation: it is
possible to send traffic to only one subnet from a given shared
network.

Stork Environment Simulator also allows sending DNS traffic to
selected DNS servers.

Stork Environment Simulator can add all the machines available in the
demo setup. It can stop and start selected Stork Agents, and Kea and
BIND 9 applications. This is useful to simulate communication problems
between applications, Stork Agents and the Stork Server.

Stork Environment Simulator can be found at: http://localhost:5000/

For development purposes simulator can be started directly by command:

$ rake run_sim

6.6. Prometheus

The Prometheus instance is preconfigured and pulls statistics from:

	node exporters: agent-kea:9100, agent-bind9:9100, agent-bind9:9100

	kea exporters embedded in stork-agent: agent-kea:9547,
agent-kea6:9547, agent-kea-ha1:9547, agent-kea-ha2:9547

	bind exporters embedded in stork-agent: agent-bind9:9119,
agent-bind9-2:9119

The Prometheus web page can be found at: http://localhost:9090/

6.7. Grafana

The Grafana instance is preconfigured as well. It pulls data from
Prometheus and loads dashboards from the Stork repository, in the
Grafana folder.

The Grafana web page can be found at: http://localhost:3000/

Manual Pages

	stork-server - The central Stork server

	stork-agent - Stork agent that monitors BIND 9 and Kea services

	stork-db-migrate - The Stork database migration tool

stork-server - The central Stork server

Synopsis

stork-server

Description

The stork-server provides the main Stork Server capabilities. In
every Stork deployment, there should be exactly one stork-server.

Arguments

The Stork Server takes the following arguments:

	-h or --help

	displays list of available parameters.

	-v or --version

	returns stork-server version.

	-d or --db-name=

	the name of the database to connect to (default: stork) [$STORK_DATABASE_NAME]

	-u or --db-user

	the user name to be used for database connections (default: stork) [$STORK_DATABASE_USER_NAME]

	--db-host

	the name of the host where database is available (default: localhost) [$STORK_DATABASE_HOST]

	-p or --db-port

	the port on which the database is available (default: 5432) [$STORK_DATABASE_PORT]

	--db-trace-queries=

	enable tracing SQL queries: run (only runtime, without migrations), all (migrations and run-time)),
all is the default and covers both migrations and run-time.enable tracing SQL queries [$STORK_DATABASE_TRACE]

	--rest-cleanup-timeout

	grace period for which to wait before killing idle connections (default: 10s)

	--rest-graceful-timeout

	grace period for which to wait before shutting down the server (default: 15s)

	--rest-max-header-size

	controls the maximum number of bytes the server will read parsing the request header’s keys and
values, including the request line. It does not limit the size of the request body. (default: 1MiB)

	--rest-host

	the IP to listen on for connections over ReST API [$STORK_REST_HOST]

	--rest-port

	the port to listen on for connections over ReST API (default: 8080) [$STORK_REST_PORT]

	--rest-listen-limit

	limit the number of outstanding requests

	--rest-keep-alive

	set the TCP keep-alive timeouts on accepted connections. It prunes dead TCP connections (e.g. closing laptop mid-download) (default: 3m)

	--rest-read-timeout

	maximum duration before timing out read of the request (default: 30s)

	--rest-write-timeout

	maximum duration before timing out write of the response (default: 60s)

	--rest-tls-certificate

	the certificate to use for secure connections [$STORK_REST_TLS_CERTIFICATE]

	--rest-tls-key

	the private key to use for secure connections [$STORK_REST_TLS_PRIVATE_KEY]

	--rest-tls-ca

	the certificate authority file to be used with mutual tls auth [$STORK_REST_TLS_CA_CERTIFICATE]

	--rest-static-files-dir

	directory with static files for UI [$STORK_REST_STATIC_FILES_DIR]

Note there is no argument for database password, as the command line arguments can sometimes be seen
by other users. You can pass it using STORK_DATABASE_PASSWORD variable.

Mailing Lists and Support

There are public mailing lists available for the Stork project. stork-users
(stork-users at lists.isc.org) is intended for Stork users. stork-dev
(stork-dev at lists.isc.org) is intended for Stork developers, prospective
contributors, and other advanced users. The lists are available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

Once stork will become more mature, ISC will be providing professional support
for Stork services.

History

The stork-server was first coded in November 2019 by Michal
Nowikowski and Marcin Siodelski.

See Also

stork-agent(8)

stork-agent - Stork agent that monitors BIND 9 and Kea services

Synopsis

stork-agent [–host] [–port]

Description

The stork-agent is a small tool that is being run on the systems
that are running BIND 9 and Kea services. Stork server connects to
the Stork Agent and uses it to monitor services remotely.

Arguments

Stork does not use explicit configuration file. Instead, its behavior can be controlled with
command line switches and/or variables. The Stork Agent takes the following command line switches.
Equivalent environment variables are listed in square brackets, where applicable.

	--listen-stork-only

	listen for commands from the Stork Server only, but not for Prometheus requests.
[$STORK_AGENT_LISTEN_STORK_ONLY]

	--listen-prometheus-only

	listen for Prometheus requests only, but not for commands from the Stork Server.
[$STORK_AGENT_LISTEN_PROMETHEUS_ONLY]

	-v or --version

	show software version.

Stork Server flags:

	--host=

	the IP or hostname to listen on for incoming Stork server connection. [$STORK_AGENT_ADDRESS]

	--port=

	the TCP port to listen on for incoming Stork server connection. (default: 8080) [$STORK_AGENT_PORT]

Prometheus Kea Exporter flags:

	--prometheus-kea-exporter-host=

	the IP or hostname to listen on for incoming Prometheus connection (default: 0.0.0.0)
[$STORK_AGENT_PROMETHEUS_KEA_EXPORTER_ADDRESS]

	--prometheus-kea-exporter-port=

	the port to listen on for incoming Prometheus connection (default: 9547)
[$STORK_AGENT_PROMETHEUS_KEA_EXPORTER_PORT]

	--prometheus-kea-exporter-interval=

	specifies how often the agent collects stats from Kea, in seconds (default: 10)
[$STORK_AGENT_PROMETHEUS_KEA_EXPORTER_INTERVAL]

Prometheus BIND 9 Exporter flags:

	--prometheus-bind9-exporter-host=

	the IP or hostname to listen on for incoming Prometheus connection (default: 0.0.0.0)
[$STORK_AGENT_PROMETHEUS_BIND9_EXPORTER_ADDRESS]

	--prometheus-bind9-exporter-port=

	the port to listen on for incoming Prometheus connection (default: 9119)
[$STORK_AGENT_PROMETHEUS_BIND9_EXPORTER_PORT]

	--prometheus-bind9-exporter-interval=

	specifies how often the agent collects stats from BIND 9, in seconds (default: 10)
[$STORK_AGENT_PROMETHEUS_BIND9_EXPORTER_INTERVAL]

	-h or --help

	displays list of available parameters.

Mailing Lists and Support

There are public mailing lists available for the Stork project. stork-users
(stork-users at lists.isc.org) is intended for Stork users. stork-dev
(stork-dev at lists.isc.org) is intended for Stork developers, prospective
contributors, and other advanced users. The lists are available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

Once stork will become more mature, ISC will be providing professional support
for Stork services.

History

The stork-agent was first coded in November 2019 by Michal Nowikowski.

See Also

stork-server(8)

stork-db-migrate - The Stork database migration tool

Synopsis

stork-db-migrate [options] command

Description

The stork-db-migrate is an optional tool that assists the database schema migrations.
Usually, there is no need to use this tool, as Stork server always runs the migration scripts on startup.
However, it may be useful for debugging and manual migrations.

Arguments

The Stork DB migration tools takes the following commands:

Available commands:

down Revert last migration (or use -t to migrate to specific version)

init Create schema versioning table in the database

reset Revert all migrations

set_version Set database version without running migrations

up Run all available migrations (or use -t to migrate to specific version)

version Print current migration version

Application Options:

	-d, --db-name=

	the name of the database to connect to (default: stork) [$STORK_DATABASE_NAME]

	-u, --db-user=

	the user name to be used for database connections (default: stork) [$STORK_DATABASE_USER_NAME]

	--db-host=

	the name of the host where database is available (default: localhost) [$STORK_DATABASE_HOST]

	-p, --db-port=

	the port on which the database is available (default: 5432) [$STORK_DATABASE_PORT]

	--db-trace-queries=

	enable tracing SQL queries: run (only runtime, without migrations), all (migrations and run-time)),
all is the default and covers both migrations and run-time.enable tracing SQL queries [$STORK_DATABASE_TRACE]

	-h, --help

	show help message

Note there is no argument for database password, as the command line arguments can sometimes be seen
by other users. You can pass it using STORK_DATABASE_PASSWORD variable.

Mailing Lists and Support

There are public mailing lists available for the Stork project. stork-users
(stork-users at lists.isc.org) is intended for Stork users. stork-dev
(stork-dev at lists.isc.org) is intended for Stork developers, prospective
contributors, and other advanced users. The lists are available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

Once stork will become more mature, ISC will be providing professional support
for Stork services.

History

The stork-db-migrate was first coded in October 2019 by Marcin Siodelski.

See Also

stork-agent(8), stork-server(8)

Index

 _static/stork-square-100px.png

_static/stork-square-200px.png

_images/kea-subnets6.png
Kea App 2.

Machine: agent-kea6
DHCPVE A v
subnet
overview o Subnet Pools
Version 174
Version Ext 174 1 2001:db8:1:
tarball
linked with: P p— P

logacplus 1.1.2
OpenssL 1.1.1 11 Sep 2018
database:
MysQL backend 9.1, library 5.7.29
PostgresQL backend 6.0, library 100010
Memfile backend 2.1

Hooks 10 hooks

Uptime 30 minutes 38 seconds.

Last Reloaded At 2020-02-05 11:20:45

_static/up.png

_images/stork-square-200px.png

_images/kea-ha-status.png
High Availability

Local server
State: load-balancing
Role: primary

Scopes served: server]

Note

Remote server (4 seconds ago)

State:
Role:

load-balancing
secondary
Scopes served: (none)

The local server responds to the entire DHCP traffic.

_images/kea-subnets-list.png
DHCP Subnets

Q Filter subnets: subnet or any other field Protocol: | any v
Subnet App
D Subnet Pools D
192.0.2.1-192.0.2.50 192.0.2.51-192.0.2.100
! 192.02.0124 150 192.0.2.151-192.0.2.200 3
1 192.0.3.0/24 192.0.3.1-192.0.3.200 4
1 192.0.3.0/24 192.0.3.1-192.0.3.200 5
1 2

"

1 0f 1 pages

_static/up-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/arch.png
Stork
Server

=N
_/ LN

Kea, BINDY

_static/comment-close.png

_static/comment.png

_images/arch.png
Stork
Server

=N
_/ LN

Kea, BINDY

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Stork Administrator Reference Manual

 		
 Overview

 		
 Goals

 		
 Architecture

 		
 Installation

 		
 Supported Systems

 		
 Installation Prerequisites

 		
 Database Migration Tool (optional)

 		
 Installing from Packages

 		
 Installing on Debian/Ubuntu

 		
 Installing on CentOS/RHEL/Fedora

 		
 Initial Setup of the Stork Server

 		
 Initial Setup of the Stork Agent

 		
 Installing from Sources

 		
 Compilation Prerequisites

 		
 Download Sources

 		
 Building

 		
 Integration with Prometheus and Grafana

 		
 Prometheus Integration

 		
 Grafana Integration

 		
 Using Stork

 		
 Managing Users

 		
 Changing a User Password

 		
 Configuration Settings

 		
 Deploying Stork Agent

 		
 Connecting and Monitoring Machines

 		
 Registering a New Machine

 		
 Monitoring a Machine

 		
 Deleting a Machine

 		
 Monitoring Applications

 		
 Application Status

 		
 IPv4 and IPv6 Subnets per Kea Application

 		
 IPv4 and IPv6 Subnets in the Whole Network

 		
 IPv4 and IPv6 Networks

 		
 Host Reservations

 		
 Sources of Host Reservations

 		
 Kea High Availability Status

 		
 Viewing Kea Log

 		
 Dashboard

 		
 DHCP Panel

 		
 Events Panel

 		
 Events Page

 		
 Backend API

 		
 Developer’s Guide

 		
 Rakefile

 		
 Generating Documentation

 		
 Setting Up the Development Environment

 		
 Installing Git Hooks

 		
 Agent API

 		
 ReST API

 		
 Backend Unit Tests

 		
 Unit Tests Database

 		
 Unit Tests Coverage

 		
 Backend Benchmarks

 		
 WebUI Unit Tests

 		
 System Tests

 		
 Dependencies

 		
 LXD Installation

 		
 Running System Tests

 		
 Developing System Tests

 		
 Docker Containers for Development

 		
 Packaging

 		
 Demo

 		
 Requirements

 		
 Setup Steps

 		
 Premium Features

 		
 Demo Containers

 		
 Initialization

 		
 Stork Environment Simulator

 		
 Prometheus

 		
 Grafana

 		
 Manual Pages

 		
 stork-server - The central Stork server

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Mailing Lists and Support

 		
 History

 		
 See Also

 		
 stork-agent - Stork agent that monitors BIND 9 and Kea services

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Mailing Lists and Support

 		
 History

 		
 See Also

 		
 stork-db-migrate - The Stork database migration tool

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Mailing Lists and Support

 		
 History

 		
 See Also

_static/file.png

_static/kea-ha-status.png
High Availability

Local server
State: load-balancing
Role: primary

Scopes served: server]

Note

Remote server (4 seconds ago)

State:
Role:

load-balancing
secondary
Scopes served: (none)

The local server responds to the entire DHCP traffic.

_static/down.png

_static/minus.png

_static/plus.png

_static/kea-subnets-list.png
DHCP Subnets

Q Filter subnets: subnet or any other field Protocol: | any v
Subnet App
D Subnet Pools D
192.0.2.1-192.0.2.50 192.0.2.51-192.0.2.100
! 192.02.0124 150 192.0.2.151-192.0.2.200 3
1 192.0.3.0/24 192.0.3.1-192.0.3.200 4
1 192.0.3.0/24 192.0.3.1-192.0.3.200 5
1 2

"

1 0f 1 pages

_static/kea-subnets6.png
Kea App 2.

Machine: agent-kea6
DHCPVE A v
subnet
overview o Subnet Pools
Version 174
Version Ext 174 1 2001:db8:1:
tarball
linked with: P p— P

logacplus 1.1.2
OpenssL 1.1.1 11 Sep 2018
database:
MysQL backend 9.1, library 5.7.29
PostgresQL backend 6.0, library 100010
Memfile backend 2.1

Hooks 10 hooks

Uptime 30 minutes 38 seconds.

Last Reloaded At 2020-02-05 11:20:45

