
Stork
Release 0.3.0

Jan 10, 2020

Contents

1 Stork Installation 3
1.1 Installation using Docker . 3
1.2 Native Installation . 4

2 Using Stork 7
2.1 Managing users . 7
2.2 Changing User Password . 7
2.3 Deploying Stork Agent . 8
2.4 Connecting and Monitoring Machines . 8

2.4.1 Registering New Machine . 8
2.4.2 Monitoring Machines . 9
2.4.3 Deleting Machines . 9

2.5 Monitoring Applications . 9
2.5.1 Application Status . 9
2.5.2 Kea High Availability Status . 9

2.6 Dashboard . 10

3 Backend API 11

4 Developer’s Guide 13
4.1 Generating Documentation . 13
4.2 Agent API . 13
4.3 Installing git hooks . 14

5 Manual Pages 15
5.1 stork-server - The central Stork server . 15

5.1.1 Synopsis . 15
5.1.2 Description . 15
5.1.3 Arguments . 15
5.1.4 Mailing List and Support . 15
5.1.5 History . 15
5.1.6 See Also . 16

5.2 stork-agent - Stork agent that monitors BIND 9 and Kea services 16
5.2.1 Synopsis . 16
5.2.2 Description . 16
5.2.3 Arguments . 16
5.2.4 Configuration . 16

i

5.2.5 Mailing List and Support . 16
5.2.6 History . 16
5.2.7 See Also . 16

6 Indices and tables 17

ii

Stork, Release 0.3.0

Stork is a new project proposed by ISC with the aim of delivering BIND 9 and Kea dashboard. It is
going to be a spiritual successor of earlier attempts - Kittiwake and Antherius. It is currently in very
early stages of planning.

This is the reference guide for Stork version 0.3.0. Links to the most up-to-date version of this docu-
ment, along with other documents for Stork, can be found in ISC’s Stork project homepage or readthe-
docs .

Contents 1

https://gitlab.isc.org/isc-projects/stork
https://stork.readthedocs.io
https://stork.readthedocs.io

Stork, Release 0.3.0

2 Contents

CHAPTER 1

Stork Installation

Stork is in its very early stages of development. As such, it is currently only supported on Ubuntu 18.04. It is likely
that the code would work on many other systems, but for the time being we want to focus on the core development,
rather than portability issues.

There are several dependencies that needs to be installed:

• rake

• Java Runtime Environment

• Docker and Docker Compose (when installing using Docker)

For details, please see Stork wiki https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment . Note the
Stork project is in very early stages and its building instructions change frequently. Please refer to the wiki page in
case of problems.

For ease of deployment, Stork uses Rake to automate compilation and installation. It facilitates installation both using
Docker and without Docker (see the following sections).

1.1 Installation using Docker

The following command will retrieve all required software (go, goswagger, nodejs, Angular dependencies, etc.) to
your local directory. No root password necessary. Note that Docker installation is optional. Using docker is the easiest
installation method. However, if you prefer to install it on your host, see the next section about Native installation.

Prepare docker images and start them up
rake docker_up

Once the build process finishes, Stork UI will be available at http://localhost:8080/. Use any browser to connect.

The installation procedure will create several Docker images:

• stork_webui: exposing web UI interface,

• stork_server: running a server backend,

3

https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment
http://localhost:8080/

Stork, Release 0.3.0

• postgres: running a PostgreSQL database used by the server,

• stork_agent-bind9: running an demo instance of BIND 9,

• stork_agent-kea: running a demo instance of Kea DHCPv4 server,

• stork_agent-kea-ha1: running the primary Kea DHCPv4 server in High Availability mode,

• stork_agent-kea-ha2: running the secondary Kea DHCPv4 server in High Availability mode

Note: The containers running Kea and BIND 9 applications are for demo purposes only. They allow the users to
quickly start playing with Stork without having to manually deploy Kea and/or BIND 9 instances.

The PostgreSQL database schema will be automatically migrated to the latest version required by the Stork server
process.

The installation procedure assumes those images are fully under Stork control. If there are existing images, they will
be overwritten.

There are several other rake targets. For a complete list of available tasks, use rake -T. Also see wiki for detailed build
instructions.

1.2 Native Installation

The following steps will install Stork and its dependencies natively, i.e. on the host machine rather than using Docker
images.

First, you need to install PostgreSQL. This is OS specific. Please follow up the instructions for your system.

$ psql postgres
psql (11.5)
Type "help" for help.

postgres=# CREATE USER stork WITH PASSWORD 'stork';
CREATE ROLE
postgres=# CREATE DATABASE stork;
CREATE DATABASE
postgres=# GRANT ALL PRIVILEGES ON DATABASE stork TO stork;
GRANT
postgres=# \c stork
You are now connected to database "stork" as user "thomson".
stork=# create extension pgcrypto;
CREATE EXTENSION

Optional step: if you want to initialize the database on your own, you need to build the migrations and use it to
initialize and upgrade the DB to the latest schema. However, this is completely optional as the database migration
will be triggered automatically upon the server startup. This is only useful if for some reason you want to set up the
database, but don’t want to run the server yet. In most cases this step can be skipped.

$ rake build_migrations
$ backend/cmd/stork-db-migrate/stork-db-migrate init
$ backend/cmd/stork-db-migrate/stork-db-migrate up

Now that you have the database environment set up, the next step is to build all the tools. Note the first command will
download some missing dependencies needed and will install it in a local directory. This is done only once and is not
needed for future rebuilds. However, it’s safe to rerun the command.

4 Chapter 1. Stork Installation

https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment#building-testing-and-running-stork

Stork, Release 0.3.0

$ rake build_backend
$ rake build_ui

The environment should be ready to run! Open 3 consoles, and run the following 3 commands, one in each console:

$ rake run_server
$ rake serve_ui
$ rake run_agent

Once all three processes are running, go ahead and connect to http://localhost:4200 with your web browser. See Using
Stork for initial password information.

1.2. Native Installation 5

http://localhost:4200

Stork, Release 0.3.0

6 Chapter 1. Stork Installation

CHAPTER 2

Using Stork

This section describes how to use features available in stork. To connect to Stork, use your web browser and connect
to port 4200. If Stork is running on your localhost, you can navigate to http://localhost:4200.

2.1 Managing users

Upon the initial installation the default administrator’s account is created and can be used to sign in to the system via
the web UI. Please use the login admin and password admin to sign in to the system.

To manage users, click on the Configuration menu and choose Users. You will see a list of existing users. At
the very least, there will be user admin.

To add new user, click Create User Account. A new tab will opened that will let you specify the new account
parameters. Some fields have specific restrictions. Username can consist of only letters, numbers and underscore. E-
mail field is optional. However, if specified, it must be a well formed e-mail. First and lastname fields are mandatory.
Password must only contain letters, digits, @, ., !, +, - and must be at least 8 characters long.

Currently, the users are be associated with one of the two predefined groups (roles), i.e. super-admin or admin,
which must be selected when the user account is created. The users belonging to the super-admin group are
granted full privileges in the system, including creation and management of user accounts. The admin group has
similar privileges, except that the users belonging to this group are not allowed to manage other users’ accounts.

Once the new user account information has been specified and all requirements are met, the Save button will become
active and you will be able to add new account.

2.2 Changing User Password

Initial password is assigned by the administrator when the user account is created. Each user should change the
password when he or she first logs in to the system. Click on the Profile menu and choose Settings. The user
profile information is displayed. Click on Change password in the menu bar on the left. In the first input box the
current password must be specified. The new password must be specified in the second input box and this password
must meet the normal requirements for the password as mentioned in the previous sections. Finally, the password must

7

http://localhost:4200

Stork, Release 0.3.0

be confirmed in the third input box. When all entered data is valid the Save button will be activated. Clicking this
button will attempt to change the password.

2.3 Deploying Stork Agent

Stork system uses agents to monitor services. Stork Agent (STAG or simply agent) is a daemon that is expected to be
deployed and run on each machine to be monitored. Currently, there are no automated deployment routines and STAG
has to be copied and run manually. This can be done in a variety of ways. Here is one of them.

Assuming you want to monitor services running on machine with IP 192.0.2.1, you can do the following on the Stork
server command line:

cd <stork-dir>
scp backend/cmd/stork-agent login@192.0.2.1:/path

On the machine to be monitored, you need to start the agent. In the basic case, you can simply run it:

./stork-agent

You can optionally pass --host= or set the STORK_AGENT_ADDRESS environment variable to specify which
address the agent will listen on. You can pass --port or set the STORK_AGENT_PORT environment variable to
specify which TCP port the agent will listen on.

Note: Unless explicitly specified, the agent will listen on all addresses on port 8080. There are no authentication
mechanisms implemented in the agent yet. Use with care!

2.4 Connecting and Monitoring Machines

2.4.1 Registering New Machine

Once the agent is deployed and running on the machine to be monitored, you should instruct Stork server to start
monitoring it. You can do so by going to Services menu and choosing Machines. You will be presented with a list of
currently registered machines.

To add a new machine, click Add New Machine. You need to specify the machine address or hostname and a port.
If Stork agent is running in a container, you should specify the container name as a machine hostname. If you launched
Stork using rake docker_up command you may specify one of the demo container names, e.g. agent-kea, agent-
bind9 etc. The demo agents are running on port 8080. If the agent you’re connecting to was launched using rake
run_agent it will listen on localhost port 8888.

Once you click Add, the server will attempt to establish gRPC over http/2 connection to the agent. Make sure that any
firewalls in between will allow incoming connections to the TCP port specified.

Once a machine is added, a number of parameters, such as hostname, address, agent version, number of CPU cores,
CPU load, available total memory, current memory utilization, uptime, OS, platform family, platform name, OS
version, kernel, virtualization details (if any), host ID and other information will be displayed.

If any applications, i.e. Kea or/and BIND 9 are detected on this machine, the status of those applications will be
displayed and the link will allow for navigating to the application details.

Navigating to the discovered applications is also possible through the Services menu.

8 Chapter 2. Using Stork

Stork, Release 0.3.0

2.4.2 Monitoring Machines

To monitor registered machines, go to Services menu and click Machines. A list of currently registered machines will
be displayed. Pagination mechanism is available to display larger number of machines.

There is a filtering mechanism that acts as an omnibox. The string typed is searched for an address, agent version,
hostname, OS, platform, OS version, kernel version, kernel architecture, virtualization system, host-id fields. The
filtering happens once you hit ENTER.

You can inspect the state of a machine by clicking its hostname. A new tab will open with machine details. Multiple
tabs can be open at the same time. You can click Refresh state to get updated information.

The machine state can also be refreshed using Action menu. On the machines list, each machine has its own menu.
Click on the triple lines button at the right side and choose the Refresh option.

2.4.3 Deleting Machines

To stop monitoring a machine, you can go to the Machines list, find the machine you want to stop monitoring, click on
the triple lines button at the right side and choose Delete. Note this will terminate the connection between Stork server
and the agent running on the machine and the server will no longer monitor it. However, the Stork agent process
will continue running. If you want to completely shut it down, you need to do so manually, e.g. by connecting to
the machine using ssh and stopping the agent there. One way to achieve that is to issue killall stork-agent
command.

2.5 Monitoring Applications

2.5.1 Application Status

Kea and BIND 9 applications discovered on the connected machines can be listed via the top level menu bar, under
Services. You can select between Kea and BIND 9 applications. The list of applications of the given type comprises
the application version, application status and some machine details. The Action button is also available which
allows for refreshing the information about the application.

The application status comprises a list of daemons belonging to the application. For BIND 9 it is always only one
daemon, named. In case of Kea, several daemons can be presented in the application status column, typically:
DHCPv4, DHCPv6, DDNS and CA (Kea Control Agent). The listed daemons are those that Stork found in the CA
configuration file. The warning sign will be displayed for those daemons from the CA configuration file that are
not running. In cases when the Kea installation is simply using the default CA configuration file, which includes
configuration of daemons that are never intended to be launched, it is recommended to remove (or comment out) those
configurations to eliminate unwanted warnings from Stork about inactive daemons.

2.5.2 Kea High Availability Status

When viewing the details of the Kea application for which High Availability is enabled (via libdhcp_ha.so hooks
library), the High Availability live status is presented and periodically refreshed for the DHCPv4 and/or DHCPv6
deamon configured as primary or secondary/standby server. The status is not displayed for the server configured as a
HA backup. See the High Availability section in the Kea ARM for the details about various roles of the servers within
the HA setup.

The following picture shows a typical High Availability status view displayed in Stork UI.

The local server is the DHCP server (daemon) belonging to the application for which the status is displayed. The
remote server is its active HA partner. The remote server server belongs to a different application running on a

2.5. Monitoring Applications 9

https://kea.readthedocs.io/en/latest/arm/hooks.html#ha-high-availability

Stork, Release 0.3.0

different machine and this machine may or may not be monitored by Stork. The status of both the local and the remote
server is fetched by sending the status-get command to the Kea server which details are displayed (local server). The
local server periodically checks the status of its partner by sending the ha-heartbeat command to it. Therefore
this information is not always up to date and its age depends on the heartbeat command interval (typically 10s). The
status of the remote server includes the age of the data displayed.

The status information contains the role, state and the scopes served by each HA partner. In our case, both servers
are in load-balancing state which means that both are serving the DHCP clients and there is no failure. If the remote
server crashes, the local server should transition to the partner-down state which will be reflected in this view. If the
local server crashes, this will manifest itself as a communication problem between Stork and the server.

2.6 Dashboard

The Main Stork page presents a simple dashboard. It includes some statistics about the monitored applications such
as: a total number of Kea and BIND 9 applications and a number of misbehaving applications.

10 Chapter 2. Using Stork

https://kea.readthedocs.io/en/latest/arm/hooks.html#the-status-get-command

CHAPTER 3

Backend API

Stork agent provides a REST API. The API is generated using [Swagger](https://swagger.io/). The API points are
currently documented in the api/swagger.yaml file.

Note: In the future Stork releases, the API documentation will be generated automatically.

11

https://swagger.io/

Stork, Release 0.3.0

12 Chapter 3. Backend API

CHAPTER 4

Developer’s Guide

Note: We acknowledge that users and developers are two different groups of people, so the documents should
eventually be separated. However, since these are still very early days of the project, this section is kept in the Stork
ARM for convenience only.

4.1 Generating Documentation

To generate documentation, simply type rake doc. You need to have Sphinx and rtd-theme installed. The generated
documentation will be available in the doc/singlehtml directory.

4.2 Agent API

The connection between the server and the agents is established using gRPC over http/2. The agent API definition is
kept in the backend/api/agent.proto file. For debugging purposes, it is possible to connect to the agent using
grpcurl tool. For example, you can retrieve a list of currently provided gRPC calls by using this command:

$ grpcurl -plaintext -proto backend/api/agent.proto localhost:8888 describe
agentapi.Agent is a service:
service Agent {

rpc detectServices (.agentapi.DetectServicesReq) returns (.agentapi.
→˓DetectServicesRsp);
rpc getState (.agentapi.GetStateReq) returns (.agentapi.GetStateRsp);
rpc restartKea (.agentapi.RestartKeaReq) returns (.agentapi.RestartKeaRsp);

}

You can also make specific gRPC calls. For example, to get the machine state, the following command can be used:

13

http://www.sphinx-doc.org
https://github.com/readthedocs/sphinx_rtd_theme
https://github.com/fullstorydev/grpcurl

Stork, Release 0.3.0

$ grpcurl -plaintext -proto backend/api/agent.proto localhost:8888 agentapi.Agent.
→˓getState
{

"agentVersion": "0.1.0",
"hostname": "copernicus",
"cpus": "8",
"cpusLoad": "1.68 1.46 1.28",
"memory": "16",
"usedMemory": "59",
"uptime": "2",
"os": "darwin",
"platform": "darwin",
"platformFamily": "Standalone Workstation",
"platformVersion": "10.14.6",
"kernelVersion": "18.7.0",
"kernelArch": "x86_64",
"hostID": "c41337a1-0ec3-3896-a954-a1f85e849d53"

}

4.3 Installing git hooks

There’s a simple git hook that inserts the issue number in the commit message automatically. If you want to use
it, go to utils directory and run git-hooks-install script. It will copy the necessary file to .git/hooks
directory.

14 Chapter 4. Developer’s Guide

CHAPTER 5

Manual Pages

5.1 stork-server - The central Stork server

5.1.1 Synopsis

stork-server

5.1.2 Description

The stork-server provides the main Stork server capabilities. In every stork deployment, there should be exactly
one stork-server.

5.1.3 Arguments

Currently stork-server takes no arguments.

5.1.4 Mailing List and Support

There is a public mailing list available for the Stork project. stork-dev (stork-dev at lists.isc.org) is intended for
Kea developers, prospective contributors, and other advanced users. The list is available at https://lists.isc.org. The
community provides best-effort support on both of those lists.

Once stork will become more mature, ISC will be providing professional support for Stork services.

5.1.5 History

The stork-server was first coded in November 2019 by Michal Nowikowski and Marcin Siodelski.

15

https://lists.isc.org

Stork, Release 0.3.0

5.1.6 See Also

stork-agent(8)

5.2 stork-agent - Stork agent that monitors BIND 9 and Kea services

5.2.1 Synopsis

stork-agent [–host] [–port]

5.2.2 Description

The stork-agent is a small tool that is being run on the systems that are running BIND 9 and Kea services. Stork
server connects to the stork agent and uses it to monitor services remotely.

5.2.3 Arguments

The Stork Agent takes the following arguments:

-h or --help Displays list of available parameters.

--host=hostname Specifies the IP to listen on. Can be controlled with $STORK_AGENT_ADDRESS environ-
ment variable. The default value is ::.

--port=1234 Specifies the TCP port to listen on for connections. The default is 8080. Can be controlled with
$STORK_AGENT_PORT environment variable.

5.2.4 Configuration

Stork agent uses two environment variables to control its behavior:

• STORK_AGENT_ADDRESS - if defined, governs which IP address to listen on

• STORK_AGENT_PORT - if defined, it controls which port to listen on. The default is 8080.

5.2.5 Mailing List and Support

There is a public mailing list available for the Stork project. stork-dev (stork-dev at lists.isc.org) is intended for BIND
9 and Kea developers, prospective contributors, and other advanced users. The list is available at https://lists.isc.org.
The community provides best-effort support on both of those lists.

Once stork will become more mature, ISC will be providing professional support for Stork services.

5.2.6 History

The stork-agent was first coded in November 2019 by Michal Nowikowski.

5.2.7 See Also

stork-server(8)

16 Chapter 5. Manual Pages

https://lists.isc.org

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

	Stork Installation
	Installation using Docker
	Native Installation

	Using Stork
	Managing users
	Changing User Password
	Deploying Stork Agent
	Connecting and Monitoring Machines
	Registering New Machine
	Monitoring Machines
	Deleting Machines

	Monitoring Applications
	Application Status
	Kea High Availability Status

	Dashboard

	Backend API
	Developer’s Guide
	Generating Documentation
	Agent API
	Installing git hooks

	Manual Pages
	stork-server - The central Stork server
	Synopsis
	Description
	Arguments
	Mailing List and Support
	History
	See Also

	stork-agent - Stork agent that monitors BIND 9 and Kea services
	Synopsis
	Description
	Arguments
	Configuration
	Mailing List and Support
	History
	See Also

	Indices and tables

