
Stork
Release 0.6.0

Apr 03, 2020

Contents

1 Overview 3
1.1 Goals . 3
1.2 Architecture . 3

2 Installation 5
2.1 Prerequisites . 5
2.2 Installing from Packages . 6

2.2.1 Installing on Debian/Ubuntu . 6
2.2.2 Installing on CentOS/RHEL/Fedora . 6
2.2.3 Initial Setup of the Stork Server . 6
2.2.4 Initial Setup of the Stork Agent . 7

2.3 Installing from Sources . 7
2.3.1 Prerequisites . 7
2.3.2 Download Sources . 8
2.3.3 Building . 8

3 Using Stork 9
3.1 Managing Users . 9
3.2 Changing a User Password . 10
3.3 Deploying Stork Agent . 10
3.4 Connecting and Monitoring Machines . 10

3.4.1 Registering a New Machine . 10
3.4.2 Monitoring a Machine . 11
3.4.3 Deleting a Machine . 11

3.5 Monitoring Applications . 11
3.5.1 Application Status . 11
3.5.2 IPv4 and IPv6 Subnets per Kea Application . 11
3.5.3 IPv4 and IPv6 Subnets in the Whole Network . 12
3.5.4 IPv4 and IPv6 Networks . 12
3.5.5 Host Reservations . 13
3.5.6 Sources of Host Reservations . 13
3.5.7 Kea High Availability Status . 14

3.6 Dashboard . 14

4 Backend API 15

5 Developer’s Guide 17

i

5.1 Rakefile . 17
5.2 Generating Documentation . 17
5.3 Setting Up the Development Environment . 17
5.4 Agent API . 18
5.5 Installing Git Hooks . 19
5.6 ReST API . 19
5.7 Docker Containers . 19
5.8 Packaging . 20

6 Demo 21
6.1 Requirements . 21
6.2 Installation Steps . 22

6.2.1 Premium Features . 22
6.3 Initialization . 22
6.4 DHCP Traffic Simulator . 23
6.5 DNS Traffic Simulator . 23
6.6 Prometheus . 23
6.7 Grafana . 23

7 Manual Pages 25
7.1 stork-server - The central Stork server . 25

7.1.1 Synopsis . 25
7.1.2 Description . 25
7.1.3 Arguments . 25
7.1.4 Mailing List and Support . 25
7.1.5 History . 25
7.1.6 See Also . 26

7.2 stork-agent - Stork agent that monitors BIND 9 and Kea services 26
7.2.1 Synopsis . 26
7.2.2 Description . 26
7.2.3 Arguments . 26
7.2.4 Configuration . 26
7.2.5 Mailing List and Support . 26
7.2.6 History . 26
7.2.7 See Also . 26

8 Indices and tables 27

ii

Stork, Release 0.6.0

Stork is a new project led by ISC with the aim of delivering an ISC BIND 9 and ISC Kea DHCP use
and monitoring dashboard. It is intended to be a spiritual successor of the earlier attempts Kittiwake and
Anterius.

This is the reference guide for Stork version 0.6.0. Links to the most up-to-date version of this doc-
ument, along with other documents for Stork, can be found on ISC’s Stork project homepage or at
readthedocs .

Contents 1

https://gitlab.isc.org/isc-projects/stork
https://stork.readthedocs.io

Stork, Release 0.6.0

2 Contents

CHAPTER 1

Overview

1.1 Goals

The goals of the Stork project are as follows:

• to provide monitoring and insight into ISC Kea DHCP and ISC BIND 9 operations

• to provide alerting mechanisms that indicate failures, fault conditions, and other unwanted events in ISC Kea
DHCP and ISC BIND 9 services

• to permit easier troubleshooting of these services

1.2 Architecture

Stork is comprised of two components: Stork Server and Stork Agent.

Stork Agent is installed along with Kea DHCP or BIND 9 and interacts directly with those services. There may
be many agents deployed in a network, one per machine.

Stork Server is installed on a stand-alone machine. It connects to any indicated agents and indirectly (via those
agents) interacts with the Kea DHCP and BIND 9 services. It provides an integrated, centralized front end for inter-
acting with these services. Only one Stork Server is deployed in a network.

3

Stork, Release 0.6.0

4 Chapter 1. Overview

CHAPTER 2

Installation

Stork can be installed from pre-built packages or from sources. The following sections describe both methods.

2.1 Prerequisites

Stork Server and Stork Agent have been tested thoroughly on the Ubuntu 18.04 system. They have been
tested and run on the Fedora 31 system as well.

The Stork Agent does not require any specific dependencies to run. It can be run immediately after installation.

For the Stork Server, a PostgreSQL database (https://www.postgresql.org/) using at least version 11 of Post-
greSQL is required. (The installation procedure for PostgreSQL is OS-specific and is not included here.)

These instructions prepare a database for use with the Stork Server, with the stork database user and stork pass-
word. Next, a database called stork is created and the pgcrypto extension is enabled in the database.

First, connect to PostgreSQL using psql and the postgres administration user:

$ psql postgres
psql (11.5)
Type "help" for help.
postgres=#

Then, prepare the database:

postgres=# CREATE USER stork WITH PASSWORD 'stork';
CREATE ROLE
postgres=# CREATE DATABASE stork;
CREATE DATABASE
postgres=# GRANT ALL PRIVILEGES ON DATABASE stork TO stork;
GRANT
postgres=# \c stork
You are now connected to database "stork" as user "thomson".
stork=# create extension pgcrypto;
CREATE EXTENSION

5

https://www.postgresql.org/

Stork, Release 0.6.0

2.2 Installing from Packages

Stork packages are stored in repositories located on the Cloudsmith service: https://cloudsmith.io/~isc/repos/stork/
packages/. Both Debian/Ubuntu and RPM packages may be found there.

Detailed instructions for setting up the operating system to use this repository are available under the Set Me Up button
on the Cloudsmith repository page.

2.2.1 Installing on Debian/Ubuntu

The first step for both Debian and Ubuntu is:

$ curl -1sLf 'https://dl.cloudsmith.io/public/isc/stork/cfg/setup/bash.deb.sh' | sudo
→˓bash

Next, install the package with Stork Server:

$ sudo apt install isc-stork-server

Then, install Stork Agent:

$ sudo apt install isc-stork-agent

It is possible to install both agent and server on the same machine.

2.2.2 Installing on CentOS/RHEL/Fedora

The first step for RPM-based distributions is:

$ curl -1sLf 'https://dl.cloudsmith.io/public/isc/stork/cfg/setup/bash.rpm.sh' | sudo
→˓bash

Next, install the package with Stork Server:

$ sudo dnf install isc-stork-server

Then, install Stork Agent:

$ sudo dnf install isc-stork-agent

It is possible to install both agent and server on the same machine.

2.2.3 Initial Setup of the Stork Server

These steps are the same for both Debian-based and RPM-based distributions that use SystemD.

After installing Stork Server from the package, the basic settings must be configured. They are stored in /etc/
stork/server.env.

These are the required settings to connect with the database:

• STORK_DATABASE_HOST - the address of a PostgreSQL database; default is localhost

• STORK_DATABASE_PORT - the port of a PostgreSQL database; default is 5432

• STORK_DATABASE_NAME - the name of a database; default is stork

6 Chapter 2. Installation

https://cloudsmith.io/~isc/repos/stork/packages/
https://cloudsmith.io/~isc/repos/stork/packages/

Stork, Release 0.6.0

• STORK_DATABASE_USER_NAME - the username for connecting to the database; default is stork

• STORK_DATABASE_PASSWORD - the password for the username connecting to the database

With those settings in place, the Stork Server service can be enabled and started:

$ sudo systemctl enable isc-stork-server
$ sudo systemctl start isc-stork-server

To check the status:

$ sudo systemctl status isc-stork-server

By default, the Stork Server web service is exposed on port 8080, so it can be visited in a web browser at
http://localhost:8080.

It is possible to put Stork Server behind an HTTP reverse proxy using Nginx or Apache. In the Stork Server
package an example configuration file is provided for Nginx, in /usr/share/stork/examples/nginx-stork.conf.

2.2.4 Initial Setup of the Stork Agent

These steps are the same for both Debian-based and RPM-based distributions that use SystemD.

After installing Stork Agent from the package, the basic settings must be configured. They are stored in /etc/
stork/agent.env.

These are the required settings to connect with the database:

• STORK_AGENT_ADDRESS - the IP address of the network interface which Stork Agent should use for
listening for Stork Server incoming connections; default is 0.0.0.0 (i.e. listen on all interfaces)

• STORK_AGENT_PORT - the port that should be used for listening; default is 8080

With those settings in place, the Stork Agent service can be enabled and started:

$ sudo systemctl enable isc-stork-server
$ sudo systemctl start isc-stork-server

To check the status:

$ sudo systemctl status isc-stork-server

After starting, the agent periodically tries to detect installed Kea DHCP or BIND 9 services on the system. If it finds
them, they are reported to the Stork Server when it connects to the agent.

Further configuration and usage of the Stork Server and the Stork Agent are described in the Using Stork
chapter.

2.3 Installing from Sources

2.3.1 Prerequisites

Stork sources can be built on Ubuntu 18.04 and Fedora 31.

There are two dependencies that need to be installed to build Stork sources:

• Rake

2.3. Installing from Sources 7

http://localhost:8080

Stork, Release 0.6.0

• Java Runtime Environment

Other dependencies are installed locally and automatically by Rake tasks.

For details about the environment, please see the Stork wiki at https://gitlab.isc.org/isc-projects/stork/wikis/
Development-Environment.

2.3.2 Download Sources

The Stork sources are available on the ISC GitLab instance: https://gitlab.isc.org/isc-projects/stork.

To get the latest sources invoke:

$ git clone https://gitlab.isc.org/isc-projects/stork

2.3.3 Building

There are several components of Stork:

• Stork Agent - this is the binary stork-agent, written in Go

• Stork Server - this is comprised of two parts: - backend service - written in Go - frontend - an Angular
application written in Typescript

All components can be built using the following command:

$ rake build_all

The agent component is installed using this command:

$ rake install_agent

and the server component with this command:

$ rake install_server

By default, all components are installed to the root folder in the current directory; however, this is not useful for
installation in a production environment. It can be customized via the DESTDIR variable, e.g.:

$ sudo rake install_server DESTDIR=/usr

8 Chapter 2. Installation

https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment
https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment
https://gitlab.isc.org/isc-projects/stork

CHAPTER 3

Using Stork

This section describes how to use the features available in Stork. To connect to Stork, use a web browser and
connect to port 8080. If Stork is running on a localhost, it can be reached by navigating to http://localhost:8080.

3.1 Managing Users

A default administrator account is created upon initial installation of Stork. It can be used to sign in to the system via
the web UI, using the username admin and password admin.

To manage users, click on the Configuration menu and choose Users to see a list of existing users. There will
be at least one user, admin.

To add a new user, click Create User Account. A new tab opens to specify the new account parameters. Some
fields have specific restrictions:

• Username can consist of only letters, numbers, and an underscore (_).

• The e-mail field is optional, but if specified, it must be a well-formed e-mail.

• The firstname and lastname fields are mandatory.

• The password must only contain letters, digits, @, ., !, +, or -, and must be at least eight characters long.

Currently, users are associated with one of the two predefined groups (roles), i.e. super-admin or admin, which
must be selected when the user account is created. Users belonging to the super-admin group are granted full priv-
ileges in the system, including creation and management of user accounts. The admin group has similar privileges,
except that the users in this group are not allowed to manage other users’ accounts.

Once the new user account information has been specified and all requirements are met, the Save button becomes
active and the new account can be enabled.

9

http://localhost:8080

Stork, Release 0.6.0

3.2 Changing a User Password

An initial password is assigned by the administrator when a user account is created. Each user should change the
password when first logging into the system. To change the password, click on the Profile menu and choose
Settings to display the user profile information. Click on Change password in the menu bar on the left and
specify the current password in the first input box. The new password must be specified and confirmed in the second
and third input boxes, and must meet the password requirements specified in the previous section. When all entered
data is valid, the Save button is activated for changing the password.

3.3 Deploying Stork Agent

The Stork system uses agents to monitor services. Stork Agent is a daemon that must be deployed and run on
each machine to be monitored. Currently, there are no automated deployment routines and Stork Agent must be
installed manually. This can be done in one of two ways: from RPM or deb packages (described in the Installation
chapter), or by simply copying the Stork Agent binary to the destination machine manually.

Assuming services will be monitored on a machine with the IP 192.0.2.1, enter the following on the Stork server
command line:

$ cd <stork-dir>
$ scp backend/cmd/stork-agent login@192.0.2.1:/path

On the machine to be monitored, start the agent by running:

$./stork-agent

It is possible to set the --host= or STORK_AGENT_ADDRESS environment variables to specify which address the
agent listens on. The --port or STORK_AGENT_PORT environment variables specify which TCP port the agent
listens on.

Note: Unless explicitly specified, the agent listens on all addresses on port 8080. There are no authentication
mechanisms implemented in the agent yet. Use with care!

3.4 Connecting and Monitoring Machines

3.4.1 Registering a New Machine

Once the agent is deployed and running on the machine to be monitored, the Stork Server must be instructed to
start monitoring it. This can be done via the Services menu, under Machines, to see a list of currently registered
machines.

To add a new machine, click Add New Machine and specify the machine address (IP address, hostname, or FQDN)
and a port.

After the Add button is clicked, the server attempts to establish a connection to the agent. Make sure that any active
firewalls will allow incoming connections to the TCP port specified.

Once a machine is added, a number of parameters are displayed, including hostname, address, agent version, number
of CPU cores, CPU load, available total memory, current memory utilization, uptime, OS, platform family, platform
name, OS version, kernel, virtualization details (if any), and host ID.

10 Chapter 3. Using Stork

Stork, Release 0.6.0

If any applications, i.e. Kea DHCP and/or BIND 9, are detected on this machine, the status of those applications is
displayed and the link allows navigation to the application details.

Navigation to the discovered applications is also possible through the Services menu.

3.4.2 Monitoring a Machine

Monitoring of registered machines is accomplished via the Services menu, under Machines. A list of currently regis-
tered machines is displayed, with multiple pages available if needed.

A filtering mechanism that acts as an omnibox is available. Via a typed string, Stork can search for an address, agent
version, hostname, OS, platform, OS version, kernel version, kernel architecture, virtualization system, or host-id
fields.

The state of a machine can be inspected by clicking its hostname; a new tab opens with the machine’s details. Multiple
tabs can be open at the same time, and clicking Refresh updates the available information.

The machine state can also be refreshed via the Action menu. On the Machines list, each machine has its own menu;
click on the triple-lines button at the right side and choose the Refresh option.

3.4.3 Deleting a Machine

To stop monitoring a machine, go to the Machines list, find the machine to stop monitoring, click on the triple-lines
button at the right side, and choose Delete. This will terminate the connection between the Stork server and the agent
running on the machine, and the server will no longer monitor it. However, the Stork agent process will continue
running on the machine. Complete shutdown of a Stork agent process must be done manually, e.g. by connecting to
the machine using ssh and stopping the agent there. One way to achieve that is to issue the killall stork-agent
command.

3.5 Monitoring Applications

3.5.1 Application Status

Kea DHCP and BIND 9 applications discovered on connected machines are listed via the top-level menu bar, under
Services. Both the Kea and BIND 9 applications can be selected; the list view includes the application version,
application status, and some machine details. The Action button is also available, to refresh the information about
the application.

The application status displays a list of daemons belonging to the application. For BIND 9, it is always only one
daemon, named. In the case of Kea, several daemons may be presented in the application status column, typically:
DHCPv4, DHCPv6, DDNS, and CA (Kea Control Agent). The listed daemons are those that Stork finds in the CA
configuration file. A warning sign is displayed for any daemons from the CA configuration file that are not running.
In cases when the Kea installation is simply using the default CA configuration file, which includes configuration of
daemons that are never intended to be launched, it is recommended to remove (or comment out) those configurations
to eliminate unwanted warnings from Stork about inactive daemons.

3.5.2 IPv4 and IPv6 Subnets per Kea Application

One of the primary configuration aspects of any network is the layout of IP addressing. This is represented in Kea
with IPv4 and IPv6 subnets. Each subnet represents addresses used on a physical link. Typically, certain parts of each
subnet (“pools”) are delegated to the DHCP server to manage. Stork is able to display this information.

3.5. Monitoring Applications 11

Stork, Release 0.6.0

One way to inspect the subnets and pools within Kea is by looking at each Kea application to get an overview of what
configurations a specific Kea application is serving. A list of configured subnets on that specific Kea application is
displayed. The following picture shows a simple view of the Kea DHCPv6 server running with a single subnet, with
three pools configured in it.

3.5.3 IPv4 and IPv6 Subnets in the Whole Network

It is convenient to see the complete overview of all subnets configured in the network being monitored by Stork.
Once at least one machine with the Kea application running is added to Stork, click on the DHCP menu and choose
Subnets to see all available subnets. The view shows all IPv4 and IPv6 subnets with the address pools and links to the
applications that are providing them. An example view of all subnets in the network is presented in the figure below.

There are filtering capabilities available in Stork; it is possible to choose whether to see IPv4 only, IPv6 only, or both.
There is also an omnisearch box available where users can type a search string. Note that for strings of four characters
or more, the filtering takes place automatically, while shorter strings require the user to hit Enter. For example, in the
above situation it is possible to show only the first (192.0.2.0/24) subnet by searching for the 0.2 string. One can also
search for specific pools, and easily filter the subnet with a specific pool, by searching for part of the pool ranges, e.g.
3.200.

Stork is able to display pool utilization for each subnet, and displays the absolute number of addresses allocated and
percentage of usage. There are two thresholds: 80% (warning; the pool utilization bar becomes orange) and 90%
(critical; the pool utilization bar becomes red).

Note: As of Stork 0.5.0, if two or more servers are handling the same subnet (e.g. a HA pair), the same subnet is
listed multiple times. This limitation will be addressed in future releases.

3.5.4 IPv4 and IPv6 Networks

Kea uses the concept of a shared network, which is essentially a stack of subnets deployed on the same physical link.
Stork is able to retrieve information about shared networks and aggregate it across all configured Kea servers. The
Shared Networks view allows for the inspection of networks and the subnets that belong in them. Pool utilization is
shown for each subnet.

12 Chapter 3. Using Stork

Stork, Release 0.6.0

3.5.5 Host Reservations

Kea DHCP servers can be configured to assign static resources or parameters to the DHCP clients communicating
with the servers. Most commonly these resources are the IP addresses or delegated prefixes. However, Kea also allows
for assigning hostnames, PXE boot parameters, client classes, DHCP options, and others. The mechanism by which a
given set of resources and/or parameters is associated with a given DHCP client is called “host reservations.”

A host reservation consists of one or more DHCP identifers used to associate the reservation with a client, e.g. MAC
address, DUID, or client identifier; and a collection of resources and/or parameters to be returned to the client if the
client’s DHCP message is associated with the host reservation by one of the identifiers. In the future, Stork is expected
to fully faciliate the management of host reservations, i.e. creating, updating, or removing reservations from within
the UI. As of the 0.6.0 release, Stork can merely detect existing host reservations specified both in the configuration
files of the monitored Kea servers and in the host database backends accessed via the Kea host_cmds premium hooks
library. At present, Stork provides no means to update or delete host reservations.

All reservations detected by Stork can be listed by selecting the DHCP menu option and then selecting Hosts.

The first column in the presented view displays one or more DHCP identifiers for each host in the format
hw-address=0a:1b:bd:43:5f:99, where hw-address is the identifier type. In this case, the identifier type
is the MAC address of the DHCP client for which the reservation has been specified. Supported identifier types are
described in the following sections of the Kea ARM: Host Reservation in DHCPv4 and Host Reservation in DHCPv6.
If multiple identifiers are present for a reservation, the reservation will be assigned when at least one of the identifiers
matches the received DHCP packet.

The second column, IP Reservations, includes the static assignments of the IP addresses and/or delegated pre-
fixes to the clients. There may be one or more IP reservations for each host.

The Subnet column contains the prefixes of the subnets to which the reserved IP addresses and prefixes belong.

Finally, the Servers # column includes the number of Kea servers configured to assign each reservation to the
client. This value will typically be greater than one when Kea servers operate in the High Availability setup. In
this case, each of the HA peers uses the same configuration and may allocate IP addresses and delegated prefixes to
the same set of clients, including static assignments via host reservations. If HA peers are configured correctly, the
reservations they share will have a Servers # value of 2.

The Filter hosts input box is located above the Hosts table. It allows filtering of hosts by identifier types,
identifier values, and IP reservations. When filtering by DHCP identifier values, it is not necessary to use colons
between the pairs of hexadecimal digits. For example, the reservation hw-address=0a:1b:bd:43:5f:99 will
be found regardless of whether the filtering text is 1b:bd:43 or 1bbd43.

3.5.6 Sources of Host Reservations

There are two ways to configure the Kea servers to use host reservations. First, the host reservations can be specified
within the Kea configuration files; see Host Reservation in DHCPv4 for details. The other way is to use a host
database backend, as described in Storing Host Reservations in MySQL, PostgreSQL, or Cassandra. The second
solution requires the given Kea server to be configured to use the host_cmds premium hooks library. This library
implements control commands used to store and fetch the host reservations from the host database which the Kea
server is connected to. If the host_cmds hooks library is not loaded, Stork will only present the reservations specified
within the Kea configuration files.

Stork periodically fetches the reservations from the host database backends and updates them in the local database.
The default interval at which Stork refreshes host reservation information is set to 60 seconds. This means that an
update in the host reservation database will not be visible in Stork until up to 60 seconds after it was applied. This
interval is currently not configurable.

Note: As of the Stork 0.6.0 release, the list of host reservations must be manually refreshed by reloading the browser

3.5. Monitoring Applications 13

https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#host-reservation-in-dhcpv4
https://kea.readthedocs.io/en/latest/arm/dhcp6-srv.html#host-reservation-in-dhcpv6
https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#host-reservation-in-dhcpv4
https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#storing-host-reservations-in-mysql-postgresql-or-cassandra

Stork, Release 0.6.0

page to observe the most recent updates fetched from the Kea servers.

3.5.7 Kea High Availability Status

When viewing the details of the Kea application for which High Availability is enabled (via the libdhcp_ha.so hooks
library), the High Availability live status is presented and periodically refreshed for the DHCPv4 and/or DHCPv6
daemon configured as primary or secondary/standby server. The status is not displayed for the server configured as an
HA backup. See the High Availability section in the Kea ARM for details about the roles of the servers within the HA
setup.

The following picture shows a typical High Availability status view displayed in the Stork UI.

The local server is the DHCP server (daemon) belonging to the application for which the status is displayed; the remote
server is its active HA partner. The remote server belongs to a different application running on a different machine,
and this machine may or may not be monitored by Stork. The statuses of both the local and the remote server are
fetched by sending the status-get command to the Kea server whose details are displayed (the local server). The local
server periodically checks the status of its partner by sending the ha-heartbeat command to it. Therefore, this
information is not always up-to-date; its age depends on the heartbeat command interval (typically 10 seconds). The
status of the remote server includes the age of the data displayed.

The status information contains the role, state, and scopes served by each HA partner. In the usual HA case, both
servers are in load-balancing state, which means that both are serving DHCP clients and there is no failure. If the
remote server crashes, the local server transitions to the partner-down state, which will be reflected in this view. If the
local server crashes, this will manifest itself as a communication problem between Stork and the server.

3.6 Dashboard

The Main Stork page presents a simple dashboard. It includes some statistics about the monitored applications, such
as the total number of Kea and BIND 9 applications, and the number of misbehaving applications.

14 Chapter 3. Using Stork

https://kea.readthedocs.io/en/latest/arm/hooks.html#ha-high-availability
https://kea.readthedocs.io/en/latest/arm/hooks.html#the-status-get-command

CHAPTER 4

Backend API

Stork Agent provides a REST API. The API is generated using [Swagger](https://swagger.io/). The API points are
currently documented in the api/swagger.yaml file.

Note: In future Stork releases, the API documentation will be generated automatically.

15

https://swagger.io/

Stork, Release 0.6.0

16 Chapter 4. Backend API

CHAPTER 5

Developer’s Guide

Note: We acknowledge that users and developers have different needs, so the user and developer documents should
eventually be separated. However, since the project is still in its early stages, this section is kept in the Stork ARM for
convenience.

5.1 Rakefile

Rakefile is a script for performing many development tasks like building source code, running linters, running unit
tests, and running Stork services directly or in Docker containers.

There are several other Rake targets. For a complete list of available tasks, use rake -T. Also see the Stork wiki for
detailed instructions.

5.2 Generating Documentation

To generate documentation, simply type rake doc. Sphinx and rtd-theme must be installed. The generated docu-
mentation will be available in the doc/singlehtml directory.

5.3 Setting Up the Development Environment

The following steps install Stork and its dependencies natively, i.e. on the host machine, rather than using Docker
images.

First, PostgreSQL must be installed. This is OS-specific, so please follow the instructions from the Installation chapter.

Optional step: to initialize the database directly, the migrations tool must be built and used to initialize and upgrade the
database to the latest schema. However, this is completely optional, as the database migration is triggered automatically

17

https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment#building-testing-and-running-stork
http://www.sphinx-doc.org
https://github.com/readthedocs/sphinx_rtd_theme

Stork, Release 0.6.0

upon server startup. This is only useful if for some reason it is desirable to set up the database but not yet run the server.
In most cases this step can be skipped.

$ rake build_migrations
$ backend/cmd/stork-db-migrate/stork-db-migrate init
$ backend/cmd/stork-db-migrate/stork-db-migrate up

Once the database environment is set up, the next step is to build all the tools. Note the first command below downloads
some missing dependencies and installs them in a local directory. This is done only once and is not needed for future
rebuilds, although it is safe to rerun the command.

$ rake build_backend
$ rake build_ui

The environment should be ready to run! Open three consoles and run the following three commands, one in each
console:

$ rake run_server

$ rake serve_ui

$ rake run_agent

Once all three processes are running, connect to http://localhost:4200 via a web browser. See Using Stork for initial
password information or for adding new machines to the server.

The run_agent runs the agent directly on the current operating system, natively; the exposed port of the agent is 8888.

There are other Rake tasks for running preconfigured agents in Docker containers. They are exposed to the host on
specific ports.

When these agents are added as machines in the Stork Server UI, both a localhost address and a port specific to
a given container must be specified. This is a list of ports for particular Rake tasks and containers:

• rake run_kea_container: Kea with DHCPv4, port 8888

• rake run_kea6_container: Kea with DHCPv6, port 8886

• rake run_kea_ha_containers (2 containers): Kea 1 and 2 with preconfigured HA, ports 8881 and 8882

• rake run_bind9_container: port 9999

5.4 Agent API

The connection between the server and the agents is established using gRPC over http/2. The agent API definition is
kept in the backend/api/agent.proto file. For debugging purposes, it is possible to connect to the agent using
the grpcurl tool. For example, a list of currently provided gRPC calls may be retrieved with this command:

$ grpcurl -plaintext -proto backend/api/agent.proto localhost:8888 describe
agentapi.Agent is a service:
service Agent {

rpc detectServices (.agentapi.DetectServicesReq) returns (.agentapi.
→˓DetectServicesRsp);
rpc getState (.agentapi.GetStateReq) returns (.agentapi.GetStateRsp);
rpc restartKea (.agentapi.RestartKeaReq) returns (.agentapi.RestartKeaRsp);

}

18 Chapter 5. Developer’s Guide

http://localhost:4200
https://github.com/fullstorydev/grpcurl

Stork, Release 0.6.0

Specific gRPC calls can also be made. For example, to get the machine state, the following command can be used:

$ grpcurl -plaintext -proto backend/api/agent.proto localhost:8888 agentapi.Agent.
→˓getState
{

"agentVersion": "0.1.0",
"hostname": "copernicus",
"cpus": "8",
"cpusLoad": "1.68 1.46 1.28",
"memory": "16",
"usedMemory": "59",
"uptime": "2",
"os": "darwin",
"platform": "darwin",
"platformFamily": "Standalone Workstation",
"platformVersion": "10.14.6",
"kernelVersion": "18.7.0",
"kernelArch": "x86_64",
"hostID": "c41337a1-0ec3-3896-a954-a1f85e849d53"

}

5.5 Installing Git Hooks

There is a simple git hook that inserts the issue number in the commit message automatically; to use it, go to the
utils directory and run the git-hooks-install script. It will copy the necessary file to the .git/hooks
directory.

5.6 ReST API

The primary user of the ReST API is the Stork UI in a web browser. The definition of the ReST API is located in the
api folder and is described in Swagger 2.0 format.

The description in Swagger is split into multiple files. Two files comprise a tag group:

• *-paths.yaml - defines URLs

• *-defs.yaml - contains entity definitions

All these files are combined by the yamlinc tool into a single Swagger file swagger.yaml. Then, swagger.
yaml generates code for:

• the UI fronted by swagger-codegen

• the backend in Go lang by go-swagger

All these steps are accomplished by Rakefile.

5.7 Docker Containers

To ease testing, there are several Docker containers available.

• server - This container is essential. It runs the Stork server, which interacts with all the agents and the
database and exposes the API. Without it, Stork will not be able to function.

5.5. Installing Git Hooks 19

Stork, Release 0.6.0

• postgres - This container is essential. It runs the PostgreSQL database that is used by the Stork server.
Without it, the Stork server will produce error messages about an unavailable database.

• webui - This container is essential in most circumstances. It provides the front-end web interface. It is poten-
tially unnecessary with the custom development of a Stork API client.

There are also several containers provided that are used to samples and they are not strictly necessary. The following
containers will not be needed in a production network, however they’re very useful to demonstrate existing Stork
capabilities. They simulate certain services that Stork is able to handle:

• agent-bind9 - This container runs a BIND 9 server. With this container, the agent can be added as a machine
and Stork will begin monitoring its BIND 9 service.

• agent-kea - This container runs a Kea DHCPv4 server. With this container, the agent can be added as a
machine and Stork will begin monitoring its Kea DHCPv4 service.

• agent-kea-ha1 and agent-kea-ha2 - These two containers should, in general, be run together. They
each have a Kea DHCPv4 server instance configured in a HA pair. With both running and registered as machines
in Stork, users can observe certain HA mechanisms, such as one taking over the traffic if the partner becomes
unavailable.

• traffic-dhcp - This container is optional. If started, it can be used to transmit DHCP packets to
agent-kea. It may be useful to observe non-zero statistics coming from Kea. When running Stork in Docker,
rake start_traffic_dhcp can be used to conveniently control traffic.

• traffic-dns - This container is optional. If stated, it can be used to transmit DNS packets towards agent-
bind9. It may be useful to observe non-zero statistics coming from BIND 9. If you’re running Stork in docker,
you can conveniently control that using rake start_traffic_dns.

• prometheus - This is a container with Prometheus for monitoring applications. It is preconfigured to monitor
Kea and BIND 9 containers.

• grafana - This is a container with Grafana, a dashboard for Prometheus. It is preconfigured to pull data from
a Prometheus container and show Stork dashboards.

5.8 Packaging

There are scripts for packaging the binary form of Stork. There are two supported formats:

• RPM

• deb

The RPM package is built on the latest CentOS version. The deb package is built on the latest Ubuntu LTS.

There are two packages built for each system: a server and an agent.

There are Rake tasks that perform the entire build procedure in a Docker container: build_rpms_in_docker and
build_debs_in_docker. It is also possible to build packages directly in the current operating system; this is provided
by the deb_agent, rpm_agent, deb_server, and rpm_server Rake tasks.

Internally, these packages are built by FPM (https://fpm.readthedocs.io/). The containers that are used to build pack-
ages are prebuilt with all dependencies required, using the build_fpm_containers Rake task. The definitions of these
containers are placed in docker/pkgs/centos-8.txt and docker/pkgs/ubuntu-18-04.txt.

20 Chapter 5. Developer’s Guide

https://fpm.readthedocs.io/

CHAPTER 6

Demo

A demo installation of Stork can be used to demonstrate Stork capabilities but can be used for its development as
well.

The demo installation uses Docker and Docker Compose to set up all Stork services. It contains:

• Stork Server

• Stork Agent with Kea DHCPv4

• Stork Agent with Kea DHCPv6

• Stork Agent with Kea HA-1 (high availability server 1)

• Stork Agent with Kea HA-2 (high availability server 2)

• Stork Agent with BIND 9

• Stork DHCP Traffic Simulator

• Stork DNS Traffic Simulator

• PostgreSQL database

• Prometheus & Grafana

These services allow observation of many Stork features.

6.1 Requirements

Running the Stork Demo requires the same dependencies as building Stork, which is described in the Installing
from Sources chapter.

Besides the standard dependencies, the Stork Demo requires:

• Docker

• Docker Compose

For details, please see the Stork wiki https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment.

21

https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment

Stork, Release 0.6.0

6.2 Installation Steps

The following command retrieves all required software (go, goswagger, nodejs, Angular dependencies, etc.) to the
local directory. No root password is necessary. Then it prepares Docker images and starts them up.

$ rake docker_up

Once the build process finishes, the Stork UI is available at http://localhost:8080/. Use any browser to connect.

The installation procedure creates several Docker images:

• stork_webui: a web UI interface,

• stork_server: a server backend,

• postgres: a PostgreSQL database used by the server,

• stork_agent-bind9: an agent with BIND 9,

• stork_agent-kea: an agent with a Kea DHCPv4 server,

• stork_agent-kea6: an agent with a Kea DHCPv6 server,

• stork_agent-kea-ha1: the primary Kea DHCPv4 server in High Availability mode,

• stork_agent-kea-ha2: the secondary Kea DHCPv4 server in High Availability mode,

• traffic-dhcp: a web application that can run DHCP traffic using perfdhcp,

• traffic-dns: a web application that can run DNS traffic using dig and flamethrower,

• prometheus: Prometheus, a monitoring solution (https://prometheus.io/),

• grafana: Grafana, a dashboard for Prometheus (https://grafana.com/)

Note: The containers running the Kea and BIND 9 applications are for demo purposes only. They allow users to
quickly start experimenting with Stork without having to manually deploy Kea and/or BIND 9 instances.

The PostgreSQL database schema is automatically migrated to the latest version required by the Stork server process.

The installation procedure assumes those images are fully under Stork control. If there are existing images, they will
be overwritten.

6.2.1 Premium Features

It is possible to run the demo with premium features enabled in Kea apps. It requires starting the demo with an access
token to the Kea premium repositories. Access tokens can be found on https://cloudsmith.io/~isc/repos/kea-1-7-prv/
setup/#formats-deb. The token can be found inside this URL on that page: https://dl.cloudsmith.io/
<access token>/isc/kea-1-7-prv/cfg/setup/bash.deb.sh. This web page and the token are avail-
able only to ISC employees and paid customers of ISC.

$ rake docker_up cs_repo_access_token=<access token>

6.3 Initialization

Stork Server requires some initial information:

22 Chapter 6. Demo

http://localhost:8080/
https://prometheus.io/
https://grafana.com/
https://cloudsmith.io/~isc/repos/kea-1-7-prv/setup/#formats-deb
https://cloudsmith.io/~isc/repos/kea-1-7-prv/setup/#formats-deb

Stork, Release 0.6.0

1. Go to http://localhost:8080/machines/all

2. Add new machines (leave the default port):

1. agent-kea

2. agent-kea6

3. agent-kea-ha1

4. agent-kea-ha2

5. agent-bind9

6.4 DHCP Traffic Simulator

The traffic simulator allows DHCP traffic to be sent to selected subnets pre-configured in Kea instances, with a limita-
tion: it is possible to send traffic to only one subnet from a given shared network.

The traffic simulator can be found at: http://localhost:5000/

6.5 DNS Traffic Simulator

Traffic simulator allows sending DNS traffic to selected DNS servers.

Traffic simulator can be found at: http://localhost:5001/

6.6 Prometheus

The Prometheus instance is preconfigured and pulls statistics from:

• node exporters: agent-kea:9100, agent-bind9:9100

• kea exporters embedded in stork-agent: agent-kea:9547, agent-kea6:9547, agent-kea-ha1:9547, agent-kea-
ha2:9547

• bind9 exporter: agent-bind9:9119, agent-bind9:9548

The Prometheus web page can be found at: http://localhost:9090/

6.7 Grafana

The Grafana instance is preconfigured as well. It pulls data from Prometheus and loads dashboards from the Stork
repository, in the Grafana folder.

The Grafana web page can be found at: http://localhost:3000/

6.4. DHCP Traffic Simulator 23

http://localhost:8080/machines/all
http://localhost:5000/
http://localhost:5001/
http://localhost:9090/
http://localhost:3000/

Stork, Release 0.6.0

24 Chapter 6. Demo

CHAPTER 7

Manual Pages

7.1 stork-server - The central Stork server

7.1.1 Synopsis

stork-server

7.1.2 Description

The stork-server provides the main Stork server capabilities. In every stork deployment, there should be exactly
one stork-server.

7.1.3 Arguments

Currently stork-server takes no arguments.

7.1.4 Mailing List and Support

There is a public mailing list available for the Stork project. stork-dev (stork-dev at lists.isc.org) is intended for
Kea developers, prospective contributors, and other advanced users. The list is available at https://lists.isc.org. The
community provides best-effort support on both of those lists.

Once stork will become more mature, ISC will be providing professional support for Stork services.

7.1.5 History

The stork-server was first coded in November 2019 by Michal Nowikowski and Marcin Siodelski.

25

https://lists.isc.org

Stork, Release 0.6.0

7.1.6 See Also

stork-agent(8)

7.2 stork-agent - Stork agent that monitors BIND 9 and Kea services

7.2.1 Synopsis

stork-agent [–host] [–port]

7.2.2 Description

The stork-agent is a small tool that is being run on the systems that are running BIND 9 and Kea services. Stork
server connects to the stork agent and uses it to monitor services remotely.

7.2.3 Arguments

The Stork Agent takes the following arguments:

-h or --help Displays list of available parameters.

--host=hostname Specifies the IP to listen on. Can be controlled with $STORK_AGENT_ADDRESS environ-
ment variable. The default value is ::.

--port=1234 Specifies the TCP port to listen on for connections. The default is 8080. Can be controlled with
$STORK_AGENT_PORT environment variable.

7.2.4 Configuration

Stork agent uses two environment variables to control its behavior:

• STORK_AGENT_ADDRESS - if defined, governs which IP address to listen on

• STORK_AGENT_PORT - if defined, it controls which port to listen on. The default is 8080.

7.2.5 Mailing List and Support

There is a public mailing list available for the Stork project. stork-dev (stork-dev at lists.isc.org) is intended for BIND
9 and Kea developers, prospective contributors, and other advanced users. The list is available at https://lists.isc.org.
The community provides best-effort support on both of those lists.

Once stork will become more mature, ISC will be providing professional support for Stork services.

7.2.6 History

The stork-agent was first coded in November 2019 by Michal Nowikowski.

7.2.7 See Also

stork-server(8)

26 Chapter 7. Manual Pages

https://lists.isc.org

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

27

	Overview
	Goals
	Architecture

	Installation
	Prerequisites
	Installing from Packages
	Installing on Debian/Ubuntu
	Installing on CentOS/RHEL/Fedora
	Initial Setup of the Stork Server
	Initial Setup of the Stork Agent

	Installing from Sources
	Prerequisites
	Download Sources
	Building

	Using Stork
	Managing Users
	Changing a User Password
	Deploying Stork Agent
	Connecting and Monitoring Machines
	Registering a New Machine
	Monitoring a Machine
	Deleting a Machine

	Monitoring Applications
	Application Status
	IPv4 and IPv6 Subnets per Kea Application
	IPv4 and IPv6 Subnets in the Whole Network
	IPv4 and IPv6 Networks
	Host Reservations
	Sources of Host Reservations
	Kea High Availability Status

	Dashboard

	Backend API
	Developer’s Guide
	Rakefile
	Generating Documentation
	Setting Up the Development Environment
	Agent API
	Installing Git Hooks
	ReST API
	Docker Containers
	Packaging

	Demo
	Requirements
	Installation Steps
	Premium Features

	Initialization
	DHCP Traffic Simulator
	DNS Traffic Simulator
	Prometheus
	Grafana

	Manual Pages
	stork-server - The central Stork server
	Synopsis
	Description
	Arguments
	Mailing List and Support
	History
	See Also

	stork-agent - Stork agent that monitors BIND 9 and Kea services
	Synopsis
	Description
	Arguments
	Configuration
	Mailing List and Support
	History
	See Also

	Indices and tables

