

[image: _images/stork-square-200px.png]

Stork Administrator Reference Manual

Stork is a new project led by ISC with the aim of delivering an
ISC BIND 9 and ISC Kea DHCP use and monitoring dashboard. It is
intended to be a spiritual successor of the earlier attempts
Kittiwake and Anterius.

This is the reference guide for Stork version 0.7.0. Links to the
most up-to-date version of this document, along with other documents
for Stork, can be found on ISC’s Stork project homepage [https://gitlab.isc.org/isc-projects/stork] or at readthedocs [https://stork.readthedocs.io] .

	1. Overview
	1.1. Goals

	1.2. Architecture

	2. Installation
	2.1. Prerequisites

	2.2. Installing from Packages
	2.2.1. Installing on Debian/Ubuntu

	2.2.2. Installing on CentOS/RHEL/Fedora

	2.2.3. Initial Setup of the Stork Server

	2.2.4. Initial Setup of the Stork Agent

	2.3. Installing from Sources
	2.3.1. Prerequisites

	2.3.2. Download Sources

	2.3.3. Building

	3. Using Stork
	3.1. Managing Users

	3.2. Changing a User Password

	3.3. Deploying Stork Agent

	3.4. Connecting and Monitoring Machines
	3.4.1. Registering a New Machine

	3.4.2. Monitoring a Machine

	3.4.3. Deleting a Machine

	3.5. Monitoring Applications
	3.5.1. Application Status

	3.5.2. IPv4 and IPv6 Subnets per Kea Application

	3.5.3. IPv4 and IPv6 Subnets in the Whole Network

	3.5.4. IPv4 and IPv6 Networks

	3.5.5. Host Reservations

	3.5.6. Sources of Host Reservations

	3.5.7. Kea High Availability Status

	3.6. Dashboard

	4. Backend API

	5. Developer’s Guide
	5.1. Rakefile

	5.2. Generating Documentation

	5.3. Setting Up the Development Environment

	5.4. Agent API

	5.5. Installing Git Hooks

	5.6. ReST API

	5.7. Docker Containers

	5.8. Packaging

	6. Demo
	6.1. Requirements

	6.2. Installation Steps
	6.2.1. Premium Features

	6.3. Initialization

	6.4. DHCP Traffic Simulator

	6.5. DNS Traffic Simulator

	6.6. Prometheus

	6.7. Grafana

Appendices

	Manual Pages

Indices and tables

	Index

	Module Index

	Search Page

1. Overview

1.1. Goals

The goals of the Stork project are as follows:

	to provide monitoring and insight into ISC Kea DHCP and ISC BIND 9
operations

	to provide alerting mechanisms that indicate failures, fault
conditions, and other unwanted events in ISC Kea DHCP and
ISC BIND 9 services

	to permit easier troubleshooting of these services

1.2. Architecture

Stork is comprised of two components: Stork Server and Stork Agent.

Stork Agent is installed along with Kea DHCP or BIND 9 and
interacts directly with those services. There may be many
agents deployed in a network, one per machine.

Stork Server is installed on a stand-alone machine. It connects to
any indicated agents and indirectly (via those agents) interacts with
the Kea DHCP and BIND 9 services. It provides an integrated,
centralized front end for interacting with these services.
Only one Stork Server is deployed in a network.

[image: _images/arch.png]

2. Installation

Stork can be installed from pre-built packages or from sources. The
following sections describe both methods.

2.1. Prerequisites

Stork Server and Stork Agent have been tested thoroughly on
the Ubuntu 18.04 system. They have been tested and run on the Fedora
31 system as well.

The Stork Agent does not require any specific dependencies to
run. It can be run immediately after installation.

For the Stork Server, a PostgreSQL database
(https://www.postgresql.org/) using at least version 11 of PostgreSQL
is required. (The installation procedure for PostgreSQL is
OS-specific and is not included here.)

These instructions prepare a database for use with the Stork
Server, with the stork database user and stork password. Next,
a database called stork is created and the pgcrypto extension is
enabled in the database.

First, connect to PostgreSQL using psql and the postgres
administration user:

$ psql postgres
psql (11.5)
Type "help" for help.
postgres=#

Then, prepare the database:

postgres=# CREATE USER stork WITH PASSWORD 'stork';
CREATE ROLE
postgres=# CREATE DATABASE stork;
CREATE DATABASE
postgres=# GRANT ALL PRIVILEGES ON DATABASE stork TO stork;
GRANT
postgres=# \c stork
You are now connected to database "stork" as user "thomson".
stork=# create extension pgcrypto;
CREATE EXTENSION

2.2. Installing from Packages

Stork packages are stored in repositories located on the Cloudsmith
service: https://cloudsmith.io/~isc/repos/stork/packages/. Both
Debian/Ubuntu and RPM packages may be found there.

Detailed instructions for setting up the operating system to use this
repository are available under the Set Me Up button on the
Cloudsmith repository page.

2.2.1. Installing on Debian/Ubuntu

The first step for both Debian and Ubuntu is:

$ curl -1sLf 'https://dl.cloudsmith.io/public/isc/stork/cfg/setup/bash.deb.sh' | sudo bash

Next, install the package with Stork Server:

$ sudo apt install isc-stork-server

Then, install Stork Agent:

$ sudo apt install isc-stork-agent

It is possible to install both agent and server on the same machine.

2.2.2. Installing on CentOS/RHEL/Fedora

The first step for RPM-based distributions is:

$ curl -1sLf 'https://dl.cloudsmith.io/public/isc/stork/cfg/setup/bash.rpm.sh' | sudo bash

Next, install the package with Stork Server:

$ sudo dnf install isc-stork-server

Then, install Stork Agent:

$ sudo dnf install isc-stork-agent

It is possible to install both agent and server on the same machine.

2.2.3. Initial Setup of the Stork Server

These steps are the same for both Debian-based and RPM-based
distributions that use SystemD.

After installing Stork Server from the package, the basic settings
must be configured. They are stored in /etc/stork/server.env.

These are the required settings to connect with the database:

	STORK_DATABASE_HOST - the address of a PostgreSQL database; default is localhost

	STORK_DATABASE_PORT - the port of a PostgreSQL database; default is 5432

	STORK_DATABASE_NAME - the name of a database; default is stork

	STORK_DATABASE_USER_NAME - the username for connecting to the database; default is stork

	STORK_DATABASE_PASSWORD - the password for the username connecting to the database

With those settings in place, the Stork Server service can be
enabled and started:

$ sudo systemctl enable isc-stork-server
$ sudo systemctl start isc-stork-server

To check the status:

$ sudo systemctl status isc-stork-server

By default, the Stork Server web service is exposed on port 8080,
so it can be visited in a web browser at http://localhost:8080.

It is possible to put Stork Server behind an HTTP reverse proxy
using Nginx or Apache. In the Stork Server package an example
configuration file is provided for Nginx, in
/usr/share/stork/examples/nginx-stork.conf.

2.2.4. Initial Setup of the Stork Agent

These steps are the same for both Debian-based and RPM-based
distributions that use SystemD.

After installing Stork Agent from the package, the basic settings
must be configured. They are stored in /etc/stork/agent.env.

These are the required settings to connect with the database:

	STORK_AGENT_ADDRESS - the IP address of the network interface which Stork Agent
should use for listening for Stork Server incoming connections;
default is 0.0.0.0 (i.e. listen on all interfaces)

	STORK_AGENT_PORT - the port that should be used for listening; default is 8080

With those settings in place, the Stork Agent service can be
enabled and started:

$ sudo systemctl enable isc-stork-server
$ sudo systemctl start isc-stork-server

To check the status:

$ sudo systemctl status isc-stork-server

After starting, the agent periodically tries to detect installed
Kea DHCP or BIND 9 services on the system. If it finds them, they are
reported to the Stork Server when it connects to the agent.

Further configuration and usage of the Stork Server and the
Stork Agent are described in the Using Stork chapter.

2.3. Installing from Sources

2.3.1. Prerequisites

Stork sources can be built on Ubuntu 18.04 and Fedora 31.

There are two dependencies that need to be installed to build
Stork sources:

	Rake

	Java Runtime Environment

Other dependencies are installed locally and automatically by Rake tasks.

For details about the environment, please see the Stork wiki at
https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment.

2.3.2. Download Sources

The Stork sources are available on the ISC GitLab instance:
https://gitlab.isc.org/isc-projects/stork.

To get the latest sources invoke:

$ git clone https://gitlab.isc.org/isc-projects/stork

2.3.3. Building

There are several components of Stork:

	Stork Agent - this is the binary stork-agent, written in Go

	Stork Server - this is comprised of two parts:
- backend service - written in Go
- frontend - an Angular application written in Typescript

All components can be built using the following command:

$ rake build_all

The agent component is installed using this command:

$ rake install_agent

and the server component with this command:

$ rake install_server

By default, all components are installed to the root folder in the
current directory; however, this is not useful for installation in a
production environment. It can be customized via the DESTDIR
variable, e.g.:

$ sudo rake install_server DESTDIR=/usr

3. Using Stork

This section describes how to use the features available in Stork. To
connect to Stork, use a web browser and connect to port 8080. If
Stork is running on a localhost, it can be reached by navigating to
http://localhost:8080.

3.1. Managing Users

A default administrator account is created upon initial installation of Stork. It can be used to
sign in to the system via the web UI, using the username admin and password admin.

To manage users, click on the Configuration menu and choose Users to see a list of
existing users. There will be at least one user, admin.

To add a new user, click Create User Account. A new tab opens to
specify the new account parameters. Some fields have specific
restrictions:

	Username can consist of only letters, numbers, and an underscore
(_).

	The e-mail field is optional, but if specified, it must be a
well-formed e-mail.

	The firstname and lastname fields are mandatory.

	The password must only contain letters, digits, @, ., !, +, or -,
and must be at least eight characters long.

Currently, users are associated with one of the two predefined groups
(roles), i.e. super-admin or admin, which must be selected
when the user account is created. Users belonging to the
super-admin group are granted full privileges in the system,
including creation and management of user accounts. The admin
group has similar privileges, except that the users in this group are
not allowed to manage other users’ accounts.

Once the new user account information has been specified and all
requirements are met, the Save button becomes active and the new
account can be enabled.

3.2. Changing a User Password

An initial password is assigned by the administrator when a user
account is created. Each user should change the password when first
logging into the system. To change the password, click on the
Profile menu and choose Settings to display the user profile
information. Click on Change password in the menu bar on the left
and specify the current password in the first input box. The new
password must be specified and confirmed in the second and third input
boxes, and must meet the password requirements specified in the
previous section. When all entered data is valid, the Save button
is activated for changing the password.

3.3. Deploying Stork Agent

The Stork system uses agents to monitor services. Stork Agent is a
daemon that must be deployed and run on each machine to be
monitored. Currently, there are no automated deployment routines and
Stork Agent must be installed manually. This can be done in one
of two ways: from RPM or deb packages (described in the
Installation chapter), or by simply copying the Stork Agent
binary to the destination machine manually.

Assuming services will be monitored on a machine with the IP
192.0.2.1, enter the following on the Stork server command line:

$ cd <stork-dir>
$ scp backend/cmd/stork-agent login@192.0.2.1:/path

On the machine to be monitored, start the agent by running:

$./stork-agent

It is possible to set the --host= or STORK_AGENT_ADDRESS
environment variables to specify which address the agent listens
on. The --port or STORK_AGENT_PORT environment variables
specify which TCP port the agent listens on.

Note

Unless explicitly specified, the agent listens on all addresses on
port 8080. There are no authentication mechanisms implemented in
the agent yet. Use with care!

3.4. Connecting and Monitoring Machines

3.4.1. Registering a New Machine

Once the agent is deployed and running on the machine to be monitored,
the Stork Server must be instructed to start monitoring it. This
can be done via the Services menu, under Machines, to
see a list of currently registered machines.

To add a new machine, click Add New Machine and specify the
machine address (IP address, hostname, or FQDN) and a port.

After the Add button is clicked, the server attempts to establish
a connection to the agent. Make sure that any active firewalls will
allow incoming connections to the TCP port specified.

Once a machine is added, a number of parameters are displayed,
including hostname, address, agent version, number of CPU cores, CPU
load, available total memory, current memory utilization, uptime, OS,
platform family, platform name, OS version, kernel, virtualization
details (if any), and host ID.

If any applications, i.e. Kea DHCP and/or BIND 9, are detected on
this machine, the status of those applications is displayed and the
link allows navigation to the application details.

Navigation to the discovered applications is also possible through the
Services menu.

3.4.2. Monitoring a Machine

Monitoring of registered machines is accomplished via the Services
menu, under Machines. A list of currently registered machines is
displayed, with multiple pages available if needed.

A filtering mechanism that acts as an omnibox is available. Via a
typed string, Stork can search for an address, agent version,
hostname, OS, platform, OS version, kernel version, kernel
architecture, virtualization system, or host-id fields.

The state of a machine can be inspected by clicking its hostname; a
new tab opens with the machine’s details. Multiple tabs can be open at
the same time, and clicking Refresh updates the available information.

The machine state can also be refreshed via the Action menu. On the
Machines list, each machine has its own menu; click on the
triple-lines button at the right side and choose the Refresh option.

3.4.3. Deleting a Machine

To stop monitoring a machine, go to the Machines list, find the
machine to stop monitoring, click on the triple-lines button at the
right side, and choose Delete. This will terminate the connection
between the Stork server and the agent running on the machine, and the
server will no longer monitor it. However, the Stork agent process
will continue running on the machine. Complete shutdown of a Stork
agent process must be done manually, e.g. by connecting to the machine
using ssh and stopping the agent there. One way to achieve that is to
issue the killall stork-agent command.

3.5. Monitoring Applications

3.5.1. Application Status

Kea DHCP and BIND 9 applications discovered on connected machines are
listed via the top-level menu bar, under Services. Both the Kea
and BIND 9 applications can be selected; the list view includes the
application version, application status, and some machine details. The
Action button is also available, to refresh the information about
the application.

The application status displays a list of daemons belonging to the
application. For BIND 9, it is always only one daemon, named. In
the case of Kea, several daemons may be presented in the application
status column, typically: DHCPv4, DHCPv6, DDNS, and CA (Kea Control
Agent). The listed daemons are those that Stork finds in the CA
configuration file. A warning sign is displayed for any daemons from
the CA configuration file that are not running. In cases when the Kea
installation is simply using the default CA configuration file, which
includes configuration of daemons that are never intended to be
launched, it is recommended to remove (or comment out) those
configurations to eliminate unwanted warnings from Stork about
inactive daemons.

3.5.2. IPv4 and IPv6 Subnets per Kea Application

One of the primary configuration aspects of any network is the layout
of IP addressing. This is represented in Kea with IPv4 and IPv6
subnets. Each subnet represents addresses used on a physical
link. Typically, certain parts of each subnet (“pools”) are delegated
to the DHCP server to manage. Stork is able to display this
information.

One way to inspect the subnets and pools within Kea is by looking at
each Kea application to get an overview of what configurations a
specific Kea application is serving. A list of configured subnets on
that specific Kea application is displayed. The following picture
shows a simple view of the Kea DHCPv6 server running with a single
subnet, with three pools configured in it.

[image: View of subnets assigned to a single Kea application]

3.5.3. IPv4 and IPv6 Subnets in the Whole Network

It is convenient to see the complete overview of all subnets
configured in the network being monitored by Stork. Once at least one
machine with the Kea application running is added to Stork, click on
the DHCP menu and choose Subnets to see all available subnets. The
view shows all IPv4 and IPv6 subnets with the address pools and links
to the applications that are providing them. An example view of all
subnets in the network is presented in the figure below.

[image: List of all subnets in the network]

There are filtering capabilities available in Stork; it is possible to
choose whether to see IPv4 only, IPv6 only, or both. There is also an
omnisearch box available where users can type a search string. Note
that for strings of four characters or more, the filtering takes place
automatically, while shorter strings require the user to hit
Enter. For example, in the above situation it is possible to show only
the first (192.0.2.0/24) subnet by searching for the 0.2 string. One
can also search for specific pools, and easily filter the subnet with
a specific pool, by searching for part of the pool ranges,
e.g. 3.200.

Stork is able to display pool utilization for each subnet, and
displays the absolute number of addresses allocated and percentage of
usage. There are two thresholds: 80% (warning; the pool utilization
bar becomes orange) and 90% (critical; the pool utilization bar
becomes red).

Note

As of Stork 0.5.0, if two or more servers are handling the same
subnet (e.g. a HA pair), the same subnet is listed multiple
times. This limitation will be addressed in future releases.

3.5.4. IPv4 and IPv6 Networks

Kea uses the concept of a shared network, which is essentially a stack
of subnets deployed on the same physical link. Stork is able to
retrieve information about shared networks and aggregate it across all
configured Kea servers. The Shared Networks view allows for the
inspection of networks and the subnets that belong in them. Pool
utilization is shown for each subnet.

3.5.5. Host Reservations

Kea DHCP servers can be configured to assign static resources or parameters to the
DHCP clients communicating with the servers. Most commonly these resources are the
IP addresses or delegated prefixes. However, Kea also allows for assigning hostnames,
PXE boot parameters, client classes, DHCP options, and others. The mechanism by which
a given set of resources and/or parameters is associated with a given DHCP client
is called “host reservations.”

A host reservation consists of one or more DHCP identifers used to associate the
reservation with a client, e.g. MAC address, DUID, or client identifier;
and a collection of resources and/or parameters to be returned to the
client if the client’s DHCP message is associated with the host reservation by one
of the identifiers. Stork can detect existing host reservations specified both in
the configuration files of the monitored Kea servers and in the host database
backends accessed via the Kea host_cmds premium hooks library. At present, Stork
provides no means to update or delete host reservations.

All reservations detected by Stork can be listed by selecting the DHCP
menu option and then selecting Hosts.

The first column in the presented view displays one or more DHCP identifiers
for each host in the format hw-address=0a:1b:bd:43:5f:99, where
hw-address is the identifier type. In this case, the identifier type is
the MAC address of the DHCP client for which the reservation has been specified.
Supported identifier types are described in the following sections of the Kea ARM:
Host Reservation in DHCPv4 [https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#host-reservation-in-dhcpv4]
and Host Reservation in DHCPv6 [https://kea.readthedocs.io/en/latest/arm/dhcp6-srv.html#host-reservation-in-dhcpv6].
If multiple identifiers are present for a reservation, the reservation will
be assigned when at least one of the identifiers matches the received DHCP packet.

The second column, IP Reservations, includes the static assignments of the
IP addresses and/or delegated prefixes to the clients. There may be one or
more IP reservations for each host.

The Global/Subnet column contains the prefixes of the subnets to which the reserved
IP addresses and prefixes belong. If the reservation is global, i.e. is valid
for all configured subnets of the given server, the word “global” is shown
instead of the subnet prefix.

Finally, the AppID @ Machine column includes one or more links to
Kea applications configured to assign each reservation to the
client. The number of applications will typically be greater than one
when Kea servers operate in the High Availability setup. In this case,
each of the HA peers uses the same configuration and may allocate IP
addresses and delegated prefixes to the same set of clients, including
static assignments via host reservations. If HA peers are configured
correctly, the reservations they share will have two links in AppID
@ Machine column. Next to each link there is a little label indicating
whether the host reservation for the given server has been specified
in its configuration file or a host database (via host_cmds premium
hooks library).

The Filter hosts input box is located above the Hosts table. It allows
filtering of hosts by identifier types, identifier values, IP reservations and
the word “global”. When filtering by DHCP identifier values, it is not
necessary to use colons between the pairs of hexadecimal digits. For
example, the reservation hw-address=0a:1b:bd:43:5f:99 will be found
regardless of whether the filtering text is 1b:bd:43 or 1bbd43.

3.5.6. Sources of Host Reservations

There are two ways to configure the Kea servers to use host reservations. First,
the host reservations can be specified within the Kea configuration files; see
Host Reservation in DHCPv4 [https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#host-reservation-in-dhcpv4]
for details. The other way is to use a host database backend, as described in
Storing Host Reservations in MySQL, PostgreSQL, or Cassandra [https://kea.readthedocs.io/en/latest/arm/dhcp4-srv.html#storing-host-reservations-in-mysql-postgresql-or-cassandra].
The second solution requires the given Kea server to be configured to use the
host_cmds premium hooks library. This library implements control commands used
to store and fetch the host reservations from the host database which the Kea
server is connected to. If the host_cmds hooks library is not loaded, Stork
will only present the reservations specified within the Kea configuration files.

Stork periodically fetches the reservations from the host database backends
and updates them in the local database. The default interval at which Stork
refreshes host reservation information is set to 60 seconds. This means that
an update in the host reservation database will not be visible in Stork until
up to 60 seconds after it was applied. This interval is currently not configurable.

Note

As of the Stork 0.7.0 release, the list of host reservations must be manually
refreshed by reloading the browser page to observe the most recent updates
fetched from the Kea servers.

3.5.7. Kea High Availability Status

When viewing the details of the Kea application for which High
Availability is enabled (via the libdhcp_ha.so hooks library), the
High Availability live status is presented and periodically refreshed
for the DHCPv4 and/or DHCPv6 daemon configured as primary or
secondary/standby server. The status is not displayed for the server
configured as an HA backup. See the High Availability section in the
Kea ARM [https://kea.readthedocs.io/en/latest/arm/hooks.html#ha-high-availability]
for details about the roles of the servers within the HA setup.

The following picture shows a typical High Availability status view
displayed in the Stork UI.

[image: High Availability status example]

The local server is the DHCP server (daemon) belonging to the
application for which the status is displayed; the remote server is
its active HA partner. The remote server belongs to a different
application running on a different machine, and this machine may or
may not be monitored by Stork. The statuses of both the local and the
remote server are fetched by sending the status-get [https://kea.readthedocs.io/en/latest/arm/hooks.html#the-status-get-command]
command to the Kea server whose details are displayed (the local
server). The local server periodically checks the status of its
partner by sending the ha-heartbeat command to it. Therefore, this
information is not always up-to-date; its age depends on the heartbeat
command interval (typically 10 seconds). The status of the remote
server includes the age of the data displayed.

The status information contains the role, state, and scopes served by
each HA partner. In the usual HA case, both servers are in
load-balancing state, which means that both are serving DHCP
clients and there is no failure. If the remote server crashes, the
local server transitions to the partner-down state, which will be
reflected in this view. If the local server crashes, this will
manifest itself as a communication problem between Stork and the
server.

3.6. Dashboard

The Main Stork page presents a simple dashboard. It includes some
statistics about the monitored applications, such as the total number
of Kea and BIND 9 applications, and the number of misbehaving
applications.

4. Backend API

Stork Agent provides a REST API. The API is generated using
[Swagger](https://swagger.io/). The API points are currently
documented in the api/swagger.yaml file.

Note

In future Stork releases, the API documentation will be
generated automatically.

5. Developer’s Guide

Note

We acknowledge that users and developers have different needs, so
the user and developer documents should eventually be
separated. However, since the project is still in its early stages,
this section is kept in the Stork ARM for convenience.

5.1. Rakefile

Rakefile is a script for performing many development tasks like
building source code, running linters, running unit tests, and running
Stork services directly or in Docker containers.

There are several other Rake targets. For a complete list of available
tasks, use rake -T. Also see the Stork wiki [https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment#building-testing-and-running-stork]
for detailed instructions.

5.2. Generating Documentation

To generate documentation, simply type rake doc.
Sphinx [http://www.sphinx-doc.org] and rtd-theme [https://github.com/readthedocs/sphinx_rtd_theme] must be installed. The
generated documentation will be available in the doc/singlehtml
directory.

5.3. Setting Up the Development Environment

The following steps install Stork and its dependencies natively,
i.e. on the host machine, rather than using Docker images.

First, PostgreSQL must be installed. This is OS-specific, so please
follow the instructions from the Installation chapter.

Optional step: to initialize the database directly, the migrations
tool must be built and used to initialize and upgrade the database to the
latest schema. However, this is completely optional, as the database
migration is triggered automatically upon server startup. This is
only useful if for some reason it is desirable to set up the database
but not yet run the server. In most cases this step can be skipped.

$ rake build_migrations
$ backend/cmd/stork-db-migrate/stork-db-migrate init
$ backend/cmd/stork-db-migrate/stork-db-migrate up

Once the database environment is set up, the next step is to build all
the tools. Note the first command below downloads some missing dependencies
and installs them in a local directory. This is done only once
and is not needed for future rebuilds, although it is safe to rerun
the command.

$ rake build_backend
$ rake build_ui

The environment should be ready to run! Open three consoles and run
the following three commands, one in each console:

$ rake run_server

$ rake serve_ui

$ rake run_agent

Once all three processes are running, connect to http://localhost:4200
via a web browser. See Using Stork for initial password information
or for adding new machines to the server.

The run_agent runs the agent directly on the current operating
system, natively; the exposed port of the agent is 8888.

There are other Rake tasks for running preconfigured agents in Docker
containers. They are exposed to the host on specific ports.

When these agents are added as machines in the Stork Server UI,
both a localhost address and a port specific to a given container
must be specified. This is a list of ports for particular Rake tasks
and containers:

	rake run_kea_container: Kea with DHCPv4, port 8888

	rake run_kea6_container: Kea with DHCPv6, port 8886

	rake run_kea_ha_containers (2 containers): Kea 1 and 2 with
preconfigured HA, ports 8881 and 8882

	rake run_bind9_container: port 9999

5.4. Agent API

The connection between the server and the agents is established using
gRPC over http/2. The agent API definition is kept in the
backend/api/agent.proto file. For debugging purposes, it is
possible to connect to the agent using the grpcurl [https://github.com/fullstorydev/grpcurl] tool. For example, a list
of currently provided gRPC calls may be retrieved with this command:

$ grpcurl -plaintext -proto backend/api/agent.proto localhost:8888 describe
agentapi.Agent is a service:
service Agent {
 rpc detectServices (.agentapi.DetectServicesReq) returns (.agentapi.DetectServicesRsp);
 rpc getState (.agentapi.GetStateReq) returns (.agentapi.GetStateRsp);
 rpc restartKea (.agentapi.RestartKeaReq) returns (.agentapi.RestartKeaRsp);
}

Specific gRPC calls can also be made. For example, to get the machine
state, the following command can be used:

$ grpcurl -plaintext -proto backend/api/agent.proto localhost:8888 agentapi.Agent.getState
{
 "agentVersion": "0.1.0",
 "hostname": "copernicus",
 "cpus": "8",
 "cpusLoad": "1.68 1.46 1.28",
 "memory": "16",
 "usedMemory": "59",
 "uptime": "2",
 "os": "darwin",
 "platform": "darwin",
 "platformFamily": "Standalone Workstation",
 "platformVersion": "10.14.6",
 "kernelVersion": "18.7.0",
 "kernelArch": "x86_64",
 "hostID": "c41337a1-0ec3-3896-a954-a1f85e849d53"
}

5.5. Installing Git Hooks

There is a simple git hook that inserts the issue number in the commit
message automatically; to use it, go to the utils directory and
run the git-hooks-install script. It will copy the necessary file
to the .git/hooks directory.

5.6. ReST API

The primary user of the ReST API is the Stork UI in a web browser. The
definition of the ReST API is located in the api folder and is
described in Swagger 2.0 format.

The description in Swagger is split into multiple files. Two files
comprise a tag group:

	*-paths.yaml - defines URLs

	*-defs.yaml - contains entity definitions

All these files are combined by the yamlinc tool into a single
Swagger file swagger.yaml. Then, swagger.yaml generates code
for:

	the UI fronted by swagger-codegen

	the backend in Go lang by go-swagger

All these steps are accomplished by Rakefile.

5.7. Docker Containers

To ease testing, there are several Docker containers available.

	server - This container is essential. It runs the Stork server,
which interacts with all the agents and the database and exposes the
API. Without it, Stork will not be able to function.

	postgres - This container is essential. It runs the PostgreSQL
database that is used by the Stork server. Without it, the Stork
server will produce error messages about an unavailable database.

	webui - This container is essential in most circumstances. It
provides the front-end web interface. It is potentially unnecessary with
the custom development of a Stork API client.

There are also several containers provided that are used to samples and
they are not strictly necessary. The following containers will not be needed
in a production network, however they’re very useful to demonstrate
existing Stork capabilities. They simulate certain services that Stork is able
to handle:

	agent-bind9 - This container runs a BIND 9 server. With this
container, the agent can be added as a machine and Stork will begin
monitoring its BIND 9 service.

	agent-kea - This container runs a Kea DHCPv4 server. With this
container, the agent can be added as a machine and Stork will begin
monitoring its Kea DHCPv4 service.

	agent-kea-ha1 and agent-kea-ha2 - These two containers
should, in general, be run together. They each have a Kea DHCPv4
server instance configured in a HA pair. With both running and
registered as machines in Stork, users can observe certain HA
mechanisms, such as one taking over the traffic if the partner
becomes unavailable.

	traffic-dhcp - This container is optional. If started, it can be used
to transmit DHCP packets to agent-kea. It may be useful to observe
non-zero statistics coming from Kea. When running Stork in Docker,
rake start_traffic_dhcp can be used to conveniently control
traffic.

	traffic-dns - This container is optional. If stated, it can be used to
transmit DNS packets towards agent-bind9. It may be useful to observe
non-zero statistics coming from BIND 9. If you’re running Stork in docker,
you can conveniently control that using rake start_traffic_dns.

	prometheus - This is a container with Prometheus for monitoring
applications. It is preconfigured to monitor Kea and BIND 9
containers.

	grafana - This is a container with Grafana, a dashboard for
Prometheus. It is preconfigured to pull data from a Prometheus
container and show Stork dashboards.

5.8. Packaging

There are scripts for packaging the binary form of Stork. There are
two supported formats:

	RPM

	deb

The RPM package is built on the latest CentOS version. The deb package
is built on the latest Ubuntu LTS.

There are two packages built for each system: a server and an agent.

There are Rake tasks that perform the entire build procedure in a
Docker container: build_rpms_in_docker and
build_debs_in_docker. It is also possible to build packages directly
in the current operating system; this is provided by the deb_agent,
rpm_agent, deb_server, and rpm_server Rake tasks.

Internally, these packages are built by FPM
(https://fpm.readthedocs.io/). The containers that are used to build
packages are prebuilt with all dependencies required, using the
build_fpm_containers Rake task. The definitions
of these containers are placed in docker/pkgs/centos-8.txt and
docker/pkgs/ubuntu-18-04.txt.

6. Demo

A demo installation of Stork can be used to demonstrate Stork
capabilities but can be used for its development as well.

The demo installation uses Docker and Docker Compose to set up all
Stork services. It contains:

	Stork Server

	Stork Agent with Kea DHCPv4

	Stork Agent with Kea DHCPv6

	Stork Agent with Kea HA-1 (high availability server 1)

	Stork Agent with Kea HA-2 (high availability server 2)

	Stork Agent with BIND 9

	Stork DHCP Traffic Simulator

	Stork DNS Traffic Simulator

	PostgreSQL database

	Prometheus & Grafana

These services allow observation of many Stork features.

6.1. Requirements

Running the Stork Demo requires the same dependencies as building
Stork, which is described in the Installing from Sources chapter.

Besides the standard dependencies, the Stork Demo requires:

	Docker

	Docker Compose

For details, please see the Stork wiki
https://gitlab.isc.org/isc-projects/stork/wikis/Development-Environment.

6.2. Installation Steps

The following command retrieves all required software (go, goswagger,
nodejs, Angular dependencies, etc.) to the local directory. No root
password is necessary. Then it prepares Docker images and starts them
up.

$ rake docker_up

Once the build process finishes, the Stork UI is available at
http://localhost:8080/. Use any browser to connect.

The installation procedure creates several Docker images:

	stork_webui: a web UI interface,

	stork_server: a server backend,

	postgres: a PostgreSQL database used by the server,

	stork_agent-bind9: an agent with BIND 9,

	stork_agent-kea: an agent with a Kea DHCPv4 server,

	stork_agent-kea6: an agent with a Kea DHCPv6 server,

	stork_agent-kea-ha1: the primary Kea DHCPv4 server in High Availability mode,

	stork_agent-kea-ha2: the secondary Kea DHCPv4 server in High Availability mode,

	traffic-dhcp: a web application that can run DHCP traffic using perfdhcp,

	traffic-dns: a web application that can run DNS traffic using dig and flamethrower,

	prometheus: Prometheus, a monitoring solution (https://prometheus.io/),

	grafana: Grafana, a dashboard for Prometheus (https://grafana.com/)

Note

The containers running the Kea and BIND 9 applications are for demo
purposes only. They allow users to quickly start experimenting with
Stork without having to manually deploy Kea and/or BIND 9
instances.

The PostgreSQL database schema is automatically migrated to the latest
version required by the Stork server process.

The installation procedure assumes those images are fully under Stork
control. If there are existing images, they will be overwritten.

6.2.1. Premium Features

It is possible to run the demo with premium features enabled in Kea
apps. It requires starting the demo with an access token to the Kea premium
repositories. Access tokens can be found on
https://cloudsmith.io/~isc/repos/kea-1-7-prv/setup/#formats-deb. The
token can be found inside this URL on that page:
https://dl.cloudsmith.io/<access token>/isc/kea-1-7-prv/cfg/setup/bash.deb.sh.
This web page and the token are available only to ISC employees and paid customers of ISC.

$ rake docker_up cs_repo_access_token=<access token>

6.3. Initialization

Stork Server requires some initial information:

	Go to http://localhost:8080/machines/all

	Add new machines (leave the default port):

	agent-kea

	agent-kea6

	agent-kea-ha1

	agent-kea-ha2

	agent-bind9

6.4. DHCP Traffic Simulator

The traffic simulator allows DHCP traffic to be sent to selected
subnets pre-configured in Kea instances, with a limitation: it is
possible to send traffic to only one subnet from a given shared
network.

The traffic simulator can be found at: http://localhost:5000/

6.5. DNS Traffic Simulator

Traffic simulator allows sending DNS traffic to selected DNS servers.

Traffic simulator can be found at: http://localhost:5001/

6.6. Prometheus

The Prometheus instance is preconfigured and pulls statistics from:

	node exporters: agent-kea:9100, agent-bind9:9100

	kea exporters embedded in stork-agent: agent-kea:9547,
agent-kea6:9547, agent-kea-ha1:9547, agent-kea-ha2:9547

	bind9 exporter: agent-bind9:9119, agent-bind9:9548

The Prometheus web page can be found at: http://localhost:9090/

6.7. Grafana

The Grafana instance is preconfigured as well. It pulls data from
Prometheus and loads dashboards from the Stork repository, in the
Grafana folder.

The Grafana web page can be found at: http://localhost:3000/

Manual Pages

	stork-server - The central Stork server

	stork-agent - Stork agent that monitors BIND 9 and Kea services

stork-server - The central Stork server

Synopsis

stork-server

Description

The stork-server provides the main Stork server capabilities. In
every stork deployment, there should be exactly one stork-server.

Arguments

Currently stork-server takes no arguments.

Mailing List and Support

There is a public mailing list available for the Stork project. stork-dev
(stork-dev at lists.isc.org) is intended for Kea developers, prospective
contributors, and other advanced users. The list is available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

Once stork will become more mature, ISC will be providing professional support
for Stork services.

History

The stork-server was first coded in November 2019 by Michal
Nowikowski and Marcin Siodelski.

See Also

stork-agent(8)

stork-agent - Stork agent that monitors BIND 9 and Kea services

Synopsis

stork-agent [–host] [–port]

Description

The stork-agent is a small tool that is being run on the systems
that are running BIND 9 and Kea services. Stork server connects to
the stork agent and uses it to monitor services remotely.

Arguments

The Stork Agent takes the following arguments:

	-h or --help

	Displays list of available parameters.

	--host=hostname

	Specifies the IP to listen on. Can be controlled with $STORK_AGENT_ADDRESS environment
variable. The default value is ::.

	--port=1234

	Specifies the TCP port to listen on for connections. The default is 8080. Can be controlled
with $STORK_AGENT_PORT environment variable.

Configuration

Stork agent uses two environment variables to control its behavior:

	STORK_AGENT_ADDRESS - if defined, governs which IP address to listen on

	STORK_AGENT_PORT - if defined, it controls which port to listen on. The
default is 8080.

Mailing List and Support

There is a public mailing list available for the Stork project. stork-dev
(stork-dev at lists.isc.org) is intended for BIND 9 and Kea developers,
prospective contributors, and other advanced users. The list is available at
https://lists.isc.org. The community provides best-effort support
on both of those lists.

Once stork will become more mature, ISC will be providing professional support
for Stork services.

History

The stork-agent was first coded in November 2019 by Michal Nowikowski.

See Also

stork-server(8)

Index

 _static/stork-square-100px.png

_static/stork-square-200px.png

_images/kea-subnets6.png
Kea App 2.

Machine: agent-kea6
DHCPVE A v
subnet
overview o Subnet Pools
Version 174
Version Ext 174 1 2001:db8:1:
tarball
linked with: P p— P

logacplus 1.1.2
OpenssL 1.1.1 11 Sep 2018
database:
MysQL backend 9.1, library 5.7.29
PostgresQL backend 6.0, library 100010
Memfile backend 2.1

Hooks 10 hooks

Uptime 30 minutes 38 seconds.

Last Reloaded At 2020-02-05 11:20:45

_images/stork-square-200px.png

_images/kea-ha-status.png
High Availability

Local server
State: load-balancing
Role: primary

Scopes served: server]

Note

Remote server (4 seconds ago)

State:
Role:

load-balancing
secondary
Scopes served: (none)

The local server responds to the entire DHCP traffic.

_static/up-pressed.png

_images/kea-subnets-list.png
DHCP Subnets

Q Filter subnets: subnet or any other field Protocol: | any v
Subnet App
D Subnet Pools D
192.0.2.1-192.0.2.50 192.0.2.51-192.0.2.100
! 192.02.0124 150 192.0.2.151-192.0.2.200 3
1 192.0.3.0/24 192.0.3.1-192.0.3.200 4
1 192.0.3.0/24 192.0.3.1-192.0.3.200 5
1 2

"

1 0f 1 pages

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/arch.png
Stork
Server

=N
_/ LN

Kea, BINDY

_static/comment-close.png

_static/comment.png

_images/arch.png
Stork
Server

=N
_/ LN

Kea, BINDY

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Stork Administrator Reference Manual

 		
 Overview

 		
 Goals

 		
 Architecture

 		
 Installation

 		
 Prerequisites

 		
 Installing from Packages

 		
 Installing on Debian/Ubuntu

 		
 Installing on CentOS/RHEL/Fedora

 		
 Initial Setup of the Stork Server

 		
 Initial Setup of the Stork Agent

 		
 Installing from Sources

 		
 Prerequisites

 		
 Download Sources

 		
 Building

 		
 Using Stork

 		
 Managing Users

 		
 Changing a User Password

 		
 Deploying Stork Agent

 		
 Connecting and Monitoring Machines

 		
 Registering a New Machine

 		
 Monitoring a Machine

 		
 Deleting a Machine

 		
 Monitoring Applications

 		
 Application Status

 		
 IPv4 and IPv6 Subnets per Kea Application

 		
 IPv4 and IPv6 Subnets in the Whole Network

 		
 IPv4 and IPv6 Networks

 		
 Host Reservations

 		
 Sources of Host Reservations

 		
 Kea High Availability Status

 		
 Dashboard

 		
 Backend API

 		
 Developer’s Guide

 		
 Rakefile

 		
 Generating Documentation

 		
 Setting Up the Development Environment

 		
 Agent API

 		
 Installing Git Hooks

 		
 ReST API

 		
 Docker Containers

 		
 Packaging

 		
 Demo

 		
 Requirements

 		
 Installation Steps

 		
 Premium Features

 		
 Initialization

 		
 DHCP Traffic Simulator

 		
 DNS Traffic Simulator

 		
 Prometheus

 		
 Grafana

 		
 Manual Pages

 		
 stork-server - The central Stork server

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Mailing List and Support

 		
 History

 		
 See Also

 		
 stork-agent - Stork agent that monitors BIND 9 and Kea services

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Configuration

 		
 Mailing List and Support

 		
 History

 		
 See Also

_static/file.png

_static/kea-ha-status.png
High Availability

Local server
State: load-balancing
Role: primary

Scopes served: server]

Note

Remote server (4 seconds ago)

State:
Role:

load-balancing
secondary
Scopes served: (none)

The local server responds to the entire DHCP traffic.

_static/down.png

_static/minus.png

_static/plus.png

_static/kea-subnets-list.png
DHCP Subnets

Q Filter subnets: subnet or any other field Protocol: | any v
Subnet App
D Subnet Pools D
192.0.2.1-192.0.2.50 192.0.2.51-192.0.2.100
! 192.02.0124 150 192.0.2.151-192.0.2.200 3
1 192.0.3.0/24 192.0.3.1-192.0.3.200 4
1 192.0.3.0/24 192.0.3.1-192.0.3.200 5
1 2

"

1 0f 1 pages

_static/kea-subnets6.png
Kea App 2.

Machine: agent-kea6
DHCPVE A v
subnet
overview o Subnet Pools
Version 174
Version Ext 174 1 2001:db8:1:
tarball
linked with: P p— P

logacplus 1.1.2
OpenssL 1.1.1 11 Sep 2018
database:
MysQL backend 9.1, library 5.7.29
PostgresQL backend 6.0, library 100010
Memfile backend 2.1

Hooks 10 hooks

Uptime 30 minutes 38 seconds.

Last Reloaded At 2020-02-05 11:20:45

